Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 57(3)2019 03.
Article in English | MEDLINE | ID: mdl-30541932

ABSTRACT

Diagnostic testing for Zika virus (ZIKV) or dengue virus (DENV) infection can be accomplished by a nucleic acid detection method; however, a negative result does not exclude infection due to the low virus titer during infection depending on the timing of sample collection. Therefore, a ZIKV- or DENV-specific serological assay is essential for the accurate diagnosis of patients and to mitigate potential severe health outcomes. A retrospective study design with dual approaches of collecting human serum samples for testing was developed. All serum samples were extensively evaluated by using both noninfectious wild-type (wt) virus-like particles (VLPs) and soluble nonstructural protein 1 (NS1) in the standard immunoglobulin M (IgM) antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Both ZIKV-derived wt-VLP- and NS1-MAC-ELISAs were found to have similar sensitivities for detecting anti-premembrane/envelope and NS1 antibodies from ZIKV-infected patient sera, although lower cross-reactivity to DENV2/3-NS1 was observed. Furthermore, group cross-reactive (GR)-antibody-ablated homologous fusion peptide-mutated (FP)-VLPs consistently showed higher positive-to-negative values than homologous wt-VLPs. Therefore, we used DENV-2/3 and ZIKV FP-VLPs to develop a novel, serological algorithm for differentiating ZIKV from DENV infection. Overall, the sensitivity and specificity of the FP-VLP-MAC-ELISA and the NS1-MAC-ELISA were each higher than 80%, with no statistical significance. The accuracy can reach up to 95% with the combination of FP-VLP and NS1 assays. In comparison to current guidelines using neutralization tests to measure ZIKV antibody, this approach can facilitate laboratory screening for ZIKV infection, especially in regions where DENV infection is endemic and capacity for neutralization testing does not exist.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Zika Virus Infection/diagnosis , Zika Virus/immunology , Cross Reactions , Dengue/immunology , Humans , Retrospective Studies , Sensitivity and Specificity , Serologic Tests/methods , Viral Nonstructural Proteins/immunology , Zika Virus Infection/immunology
2.
Elife ; 72018 10 18.
Article in English | MEDLINE | ID: mdl-30334522

ABSTRACT

Dengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein VLP derived from DENV serotype-2 were engineered becoming highly matured (mD2VLP) and showed variable size distribution with diameter of ~31 nm forming the major population under cryo-electron microscopy examination. Furthermore, mD2VLP particles of 31 nm diameter possess a T = 1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes. Mice vaccinated with mD2VLP generated higher cross-reactive (CR) neutralization antibodies (NtAbs) and were fully protected against all 4 serotypes of DENV. Our results highlight the potential of 'epitope-resurfaced' mature-form D2VLPs in inducing quaternary structure-recognizing broad CR NtAbs to guide future dengue vaccine design.


Subject(s)
Antibodies, Neutralizing/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Epitopes/immunology , Vaccines, Virus-Like Particle/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Dengue Virus/classification , Dengue Virus/ultrastructure , Epitopes/chemistry , Female , Immunization , Mice, Inbred BALB C , Serotyping , Solvents , Survival Analysis , Vaccines, Virus-Like Particle/ultrastructure , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virion/metabolism , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...