Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 18: 1355565, 2024.
Article in English | MEDLINE | ID: mdl-38638697

ABSTRACT

Introduction: Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods: A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results: We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion: The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.

2.
Clin Invest Med ; 45(1): E1-4, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35339123

ABSTRACT

Over the past two years, physician-scientist trainees have persevered in the face of evolving challenges presented by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Research and healthcare institutions across the country continue to feel the impacts of the public health emergency. As scientists and physicians generate evidence to inform the prevention and treatment of COVID-19, physician-scientist trainees in all disciplines have adapted to the changing conditions of their education.


Subject(s)
Biomedical Research , COVID-19 , Physicians , Biomedical Research/education , COVID-19/epidemiology , Canada , Humans , Research Personnel
3.
Clin Invest Med ; 44(3): E1-3, 2021 10 03.
Article in English | MEDLINE | ID: mdl-34600454

ABSTRACT

I hope you're taking care and found some time to relax this summer. A new semester may mean a big transition­some folks are starting their graduate studies, re-entering clerkship, starting residency or entering a fellowship. For some, there will be little or no change at all; but just a continuation of one of the many phases of the physician-scientist training pathway. Whatever stage you're at, the Clinical Investigator Trainee Association of Canada (CITAC) community is here to support and advocate for you!


Subject(s)
Biomedical Research , Research Personnel , Canada , Humans
4.
Clin Invest Med ; 44(3): E4-10, 2021 10 03.
Article in English | MEDLINE | ID: mdl-34600455

ABSTRACT

The 2020 Annual General Meeting (AGM) and Young Investigators' Forum of the Canadian Society for Clinical Investigation / Société Canadienne de Recherches Clinique (CSCI/SCRC) and Clinician Investigator Trainee Association of Canada/Association des Cliniciens-Chercheurs en Formation du Canada (CITAC/ACCFC) was the first meeting to be hosted virtually. The theme was "Navigating Uncertainty, Embracing Change and Empowering the Next Generation of Clinician-Scientists", and the meeting featured lectures and workshops that were designed to provide knowledge and skills for professional development of clinician investigator trainees. The opening remarks were given by Jason Berman (President of CSCI/SCRC), Tina Marvasti (President of CITAC/ACCFC) and Nicola Jones (University of Toronto Clinician Investigator Program Symposium Chair). Dr. Michael Strong, President of the Canadian Institutes of Health Research, delivered the keynote presentation titled "CIHR's COVID-19 Response and Strategic Planning". Dr. John Bell (University of Ottawa) received the CSCI Distinguished Scientist Award, Dr. Stanley Nattel (Université de Montréal) received the CSCI-RCPSC Henry Friesen Award (RCPSC; Royal College of Physicians and Surgeons of Canada) and Dr. Meghan Azad (University of Manitoba) received the CSCI Joe Doupe Young Investigator Award. Each scientist delivered talks on their award-winning research. The interactive workshops were "Developing Strategies to Maintain Wellness", "Understanding the Hidden Curriculum: Power and Privilege in Science and Medicine", "Hiring a Clinician Scientist Trainee: What Leaders Are Looking For" and "COVID-19: A Case Study for Pivoting Your Research". The AGM included presentations from clinician investigator trainees nationwide. Over 70 abstracts were showcased, most are summarized in this review, and six were selected for oral presentations.


Subject(s)
Biomedical Research , Research Personnel , Canada , Congresses as Topic , Humans
6.
PLoS One ; 16(7): e0242236, 2021.
Article in English | MEDLINE | ID: mdl-34292972

ABSTRACT

People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer's disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-ß that accumulates in the brains of people who have AD. Recent experimental results demonstrate that a gene or genes on chromosome 21, other than APP, when triplicated significantly accelerate amyloid-ß pathology in a transgenic mouse model of amyloid-ß deposition. Multiple lines of evidence indicate that cysteine cathepsin activity influences APP cleavage and amyloid-ß accumulation. Located on human chromosome 21 (Hsa21) is an endogenous inhibitor of cathepsin proteases, CYSTATIN B (CSTB) which is proposed to regulate cysteine cathepsin activity in vivo. Here we determined if three copies of the mouse gene Cstb is sufficient to modulate amyloid-ß accumulation and cathepsin activity in a transgenic APP mouse model. Duplication of Cstb resulted in an increase in transcriptional and translational levels of Cstb in the mouse cortex but had no effect on the deposition of insoluble amyloid-ß plaques or the levels of soluble or insoluble amyloid-ß42, amyloid-ß40, or amyloid-ß38 in 6-month old mice. In addition, the increased CSTB did not alter the activity of cathepsin B enzyme in the cortex of 3-month or 6-month old mice. These results indicate that the single-gene duplication of Cstb is insufficient to elicit a disease-modifying phenotype in the dupCstb x tgAPP mice, underscoring the complexity of the genetic basis of AD-DS and the importance of multiple gene interactions in disease.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Cathepsin B/metabolism , Cystatin B/genetics , Aging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebral Cortex/enzymology , Cerebral Cortex/metabolism , Cystatin B/metabolism , Disease Models, Animal , Female , Gene Duplication , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Sci Rep ; 11(1): 5736, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707583

ABSTRACT

Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer's disease, in which amyloid-ß accumulates in the brain. Amyloid-ß is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or 'dose' of APP is thought to be the cause of this early-onset Alzheimer's disease. However, other chromosome 21 genes likely modulate disease when in three-copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, influences APP/Aß biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid-ß aggregation and APP transgene-associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer's disease in people who have Down syndrome.


Subject(s)
Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Down Syndrome/genetics , Alzheimer Disease/complications , Alzheimer Disease/genetics , Amyloid beta-Peptides/chemistry , Animals , Brain/pathology , Chromosomes, Mammalian/genetics , Disease Models, Animal , Down Syndrome/complications , Mice , Mice, Transgenic , Phenotype , Phosphotransferases/metabolism , Protein Aggregates , Protein-Arginine N-Methyltransferases/metabolism , Segmental Duplications, Genomic , Seizures/complications , Seizures/pathology , Solubility , Survival Analysis , Transgenes
8.
Clin Invest Med ; 43(3): E5-14, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32971579

ABSTRACT

The 2019 Annual General Meeting and Young Investigators' Forum of the Canadian Society for Clinical Investigation / Société Canadienne de Recherche Clinique (CSCI/SCRC) and Clinician Investigator Trainee Association of Canada / Association des Cliniciens-Chercheurs en Formation du Canada (CITAC/ACCFC) was held in Banff, Alberta on November 8-10th, 2019. The theme was "Positioning Early Career Investigators for Success: Strategy and Resilience". Lectures and workshops provided knowledge and tools to facilitate the attendees' development as clinician investigators. Dr. Jason Berman (President of CSCI/SCRC), Elina Cook (President of CITAC/ACCFC) and Drs. Doreen Rabi and Zelma Kiss (University of Calgary Organizing Co-Chairs) gave opening presentations. The keynote speakers were Dr. William Foulkes (McGill University) (Distinguished Scientist Award winner) and Dr. Andrés Finzi (Université de Montréal) (Joe Doupe Young Investigator Award winner). Dr. Robert Bortolussi (Dalhousie University) received the Distinguished Service Award for his work as the Editor-in-Chief of Clinical and Investigative Medicine and for being instrumental in the development of the Canadian Child Health Clinician Scientist Program. This meeting was the first to host a panel discussion with Drs. Stephen Robbins and Marcello Tonelli from the Canadian Institutes of Health Research. Workshops on communication, career planning and work-life balance were hosted by André Picard and Drs. Todd Anderson, Karen Tang, William Ghali, May Lynn Quan, Alicia Polachek and Shannon Ruzycki. The AGM showcased 90 presentations from clinician investigator trainees from across Canada. Most of the abstracts are summarized in this review. Eight outstanding abstracts were selected for oral presentation at the President's Forum.


Subject(s)
Biomedical Research , Research Personnel , Alberta , Canada , Child , Humans , Societies, Medical , Universities
9.
Clin Invest Med ; 43(1): E35-E38, 2020 04 05.
Article in English | MEDLINE | ID: mdl-32247301

ABSTRACT

It is important to strengthen critical thinking and scientific writing abilities during medical training to support trainees in their research endeavors and prepare students for careers in academic medicine. This commentary describes an interactive workshop to encourage student engagement with scientific literature and contribution to scholarly discourse by writing letters to the editor (LTEs). Students in the MD-PhD program at McGill University were asked to identify an article from a high-impact journal and think about ways in which they could address its scientific content. Students completed this preparation on their own time and then attended a 90-minute workshop where their LTEs were finalized and submitted. The LTE workshops were conducted in 2017 and 2019, and student participation and informal feedback indicated that perceptions of the workshops were positive. The workshops provided students an opportunity to strengthen their critical appraisal and academic communication skills while also contributing to the scientific literature. Letters written by aspiring and practicing physicians add valuable clinical insight to the literature and promote physician engagement with research. Strategies to support the adoption of LTE workshops include incorporating them into longitudinal curricula in medical school and integrating them into journal clubs during residency or fellowship.


Subject(s)
Curriculum , Education, Medical, Graduate , Physicians , Students, Medical , Writing , Humans
10.
Brain ; 141(8): 2457-2474, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29945247

ABSTRACT

Down syndrome, caused by trisomy of chromosome 21, is the single most common risk factor for early-onset Alzheimer's disease. Worldwide approximately 6 million people have Down syndrome, and all these individuals will develop the hallmark amyloid plaques and neurofibrillary tangles of Alzheimer's disease by the age of 40 and the vast majority will go on to develop dementia. Triplication of APP, a gene on chromosome 21, is sufficient to cause early-onset Alzheimer's disease in the absence of Down syndrome. However, whether triplication of other chromosome 21 genes influences disease pathogenesis in the context of Down syndrome is unclear. Here we show, in a mouse model, that triplication of chromosome 21 genes other than APP increases amyloid-ß aggregation, deposition of amyloid-ß plaques and worsens associated cognitive deficits. This indicates that triplication of chromosome 21 genes other than APP is likely to have an important role to play in Alzheimer's disease pathogenesis in individuals who have Down syndrome. We go on to show that the effect of trisomy of chromosome 21 on amyloid-ß aggregation correlates with an unexpected shift in soluble amyloid-ß 40/42 ratio. This alteration in amyloid-ß isoform ratio occurs independently of a change in the carboxypeptidase activity of the γ-secretase complex, which cleaves the peptide from APP, or the rate of extracellular clearance of amyloid-ß. These new mechanistic insights into the role of triplication of genes on chromosome 21, other than APP, in the development of Alzheimer's disease in individuals who have Down syndrome may have implications for the treatment of this common cause of neurodegeneration.


Subject(s)
Down Syndrome/genetics , Down Syndrome/pathology , Plaque, Amyloid/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/physiology , Animals , Brain/pathology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Trisomy
11.
Magn Reson Imaging ; 50: 26-37, 2018 07.
Article in English | MEDLINE | ID: mdl-29545212

ABSTRACT

Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T1-weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aß accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD.


Subject(s)
Alzheimer Disease/pathology , Diffusion Tensor Imaging/methods , Hippocampus/diagnostic imaging , Hippocampus/pathology , Image Processing, Computer-Assisted/methods , Alzheimer Disease/diagnostic imaging , Animals , Diffusion Magnetic Resonance Imaging/methods , Disease Models, Animal , Humans , Male , Mice , Mice, Transgenic
13.
F1000Res ; 6: 2072, 2017.
Article in English | MEDLINE | ID: mdl-29225795

ABSTRACT

Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson's disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.

SELECTION OF CITATIONS
SEARCH DETAIL
...