Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioorg Med Chem Lett ; 42: 128050, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33887439

ABSTRACT

ERAP1 is a zinc-dependent M1-aminopeptidase that trims lipophilic amino acids from the N-terminus of peptides. Owing to its importance in the processing of antigens and regulation of the adaptive immune response, dysregulation of the highly polymorphic ERAP1 has been implicated in autoimmune disease and cancer. To test this hypothesis and establish the role of ERAP1 in these disease areas, high affinity, cell permeable and selective chemical probes are essential. DG013A 1, is a phosphinic acid tripeptide mimetic inhibitor with reported low nanomolar affinity for ERAP1. However, this chemotype is a privileged structure for binding to various metal-dependent peptidases and contains a highly charged phosphinic acid moiety, so it was unclear whether it would display the high selectivity and passive permeability required for a chemical probe. Therefore, we designed a new stereoselective route to synthesize a library of DG013A 1 analogues to determine the suitability of this compound as a cellular chemical probe to validate ERAP1 as a drug discovery target.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Oligopeptides/pharmacology , Phosphinic Acids/pharmacology , Aminopeptidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Minor Histocompatibility Antigens/metabolism , Models, Molecular , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Phosphinic Acids/chemical synthesis , Phosphinic Acids/chemistry , Structure-Activity Relationship
2.
Mol Cancer Ther ; 20(4): 739-748, 2021 04.
Article in English | MEDLINE | ID: mdl-33563753

ABSTRACT

Prostate cancer is critically dependent on androgen receptor (AR) signaling. Despite initial responsiveness to androgen deprivation, most patients with advanced prostate cancer subsequently progress to a clinically aggressive castrate-resistant prostate cancer (CRPC) phenotype, typically associated with expression of splice-variant or mutant AR forms. Although current evidence suggests that the vacuolar-ATPase (V-ATPase), a multiprotein complex that catalyzes proton transport across intracellular and plasma membranes, influences wild-type AR function, the effect of V-ATPase inhibition on variant AR function is unknown.Inhibition of V-ATPase reduced AR function in wild-type and mutant AR luciferase reporter models. In hormone-sensitive prostate cancer cell lines (LNCaP, DuCaP) and mutant AR CRPC cell lines (22Rv1, LNCaP-F877L/T878A), V-ATPase inhibition using bafilomycin-A1 and concanamycin-A reduced AR expression, and expression of AR target genes, at mRNA and protein levels. Furthermore, combining chemical V-ATPase inhibition with the AR antagonist enzalutamide resulted in a greater reduction in AR downstream target expression than enzalutamide alone in LNCaP cells. To investigate the role of individual subunit isoforms, siRNA and CRISPR-Cas9 were used to target the V1C1 subunit in 22Rv1 cells. Whereas transfection with ATP6V1C1-targeted siRNA significantly reduced AR protein levels and function, CRISPR-Cas9-mediated V1C1 knockout showed no substantial change in AR expression, but a compensatory increase in protein levels of the alternate V1C2 isoform.Overall, these results indicate that V-ATPase dysregulation is directly linked to both hormone-responsive prostate cancer and CRPC via impact on AR function. In particular, V-ATPase inhibition can reduce AR signaling regardless of mutant AR expression.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/drug effects , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Humans , Male , Transfection
3.
Cancer Med ; 7(8): 3800-3811, 2018 08.
Article in English | MEDLINE | ID: mdl-29926527

ABSTRACT

Vacuolar ATPase (V-ATPase) is an ATP-dependent H+ -transporter that pumps protons across intracellular and plasma membranes. It consists of a large multi-subunit protein complex and influences a wide range of cellular processes. This review focuses on emerging evidence for the roles for V-ATPase in cancer. This includes how V-ATPase dysregulation contributes to cancer growth, metastasis, invasion and proliferation, and the potential link between V-ATPase and the development of drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Neoplasms/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/pathology , Protein Binding , Structure-Activity Relationship , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...