Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
CRISPR J ; 3(6): 440-453, 2020 12.
Article in English | MEDLINE | ID: mdl-33346710

ABSTRACT

The ability to alter genomes specifically by CRISPR-Cas gene editing has revolutionized biological research, biotechnology, and medicine. Broad therapeutic application of this technology, however, will require thorough preclinical assessment of off-target editing by homology-based prediction coupled with reliable methods for detecting off-target editing. Several off-target site nomination assays exist, but careful comparison is needed to ascertain their relative strengths and weaknesses. In this study, HEK293T cells were treated with Streptococcus pyogenes Cas9 and eight guide RNAs with varying levels of predicted promiscuity in order to compare the performance of three homology-independent off-target nomination methods: the cell-based assay, GUIDE-seq, and the biochemical assays CIRCLE-seq and SITE-seq. The three methods were benchmarked by sequencing 75,000 homology-nominated sites using hybrid capture followed by high-throughput sequencing, providing the most comprehensive assessment of such methods to date. The three methods performed similarly in nominating sequence-confirmed off-target sites, but with large differences in the total number of sites nominated. When combined with homology-dependent nomination methods and confirmation by sequencing, all three off-target nomination methods provide a comprehensive assessment of off-target activity. GUIDE-seq's low false-positive rate and the high correlation of its signal with observed editing highlight its suitability for nominating off-target sites for ex vivo CRISPR-Cas therapies.


Subject(s)
Gene Editing/ethics , Gene Editing/methods , Gene Editing/trends , Artifacts , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Human/genetics , Genomic Instability/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , RNA, Guide, Kinetoplastida/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/pathogenicity
2.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33128877

ABSTRACT

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Convalescence , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Epitope Mapping , Epitopes, T-Lymphocyte , Female , Humans , Immunodominant Epitopes , Immunologic Memory , Male , Middle Aged , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Polyproteins , SARS-CoV-2 , Viral Proteins/immunology , Young Adult
4.
Nat Med ; 25(8): 1260-1265, 2019 08.
Article in English | MEDLINE | ID: mdl-31263286

ABSTRACT

Most pancreatic neuroendocrine tumors (PNETs) do not produce excess hormones and are therefore considered 'non-functional'1-3. As clinical behaviors vary widely and distant metastases are eventually lethal2,4, biological classifications might guide treatment. Using enhancer maps to infer gene regulatory programs, we find that non-functional PNETs fall into two major subtypes, with epigenomes and transcriptomes that partially resemble islet α- and ß-cells. Transcription factors ARX and PDX1 specify these normal cells, respectively5,6, and 84% of 142 non-functional PNETs expressed one or the other factor, occasionally both. Among 103 cases, distant relapses occurred almost exclusively in patients with ARX+PDX1- tumors and, within this subtype, in cases with alternative lengthening of telomeres. These markedly different outcomes belied similar clinical presentations and histology and, in one cohort, occurred irrespective of MEN1 mutation. This robust molecular stratification provides insight into cell lineage correlates of non-functional PNETs, accurately predicts disease course and can inform postoperative clinical decisions.


Subject(s)
Enhancer Elements, Genetic , Pancreatic Neoplasms/genetics , Cell Lineage , Homeodomain Proteins/analysis , Humans , Mutation , Pancreatic Neoplasms/chemistry , Proto-Oncogene Proteins/genetics , Telomere , Trans-Activators/analysis , Transcription Factors/analysis
5.
Aging Cell ; 17(3): e12742, 2018 06.
Article in English | MEDLINE | ID: mdl-29484800

ABSTRACT

Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, although lamin B1 resides at a large fraction of domains at both ages, a third of lamin B1-associated regions are bound exclusively at each age in vivo. Regions occupied by lamin B1 solely in young livers are enriched for the forkhead motif, bound by Foxa pioneer factors. We also show that Foxa2 binds more sites in Zmpste24 mutant mice, a progeroid laminopathy model, similar to increased Foxa2 occupancy in old livers. Aged and Zmpste24-deficient livers share several features, including nuclear lamina abnormalities, increased Foxa2 binding, de-repression of PPAR- and LXR-dependent gene expression, and fatty liver. In old livers, additional Foxa2 binding is correlated to loss of lamin B1 and heterochromatin (H3K9me3 occupancy) at these loci. Our observations suggest that changes at the nuclear lamina are linked to altered Foxa2 binding, enabling opening of chromatin and de-repression of genes encoding lipid synthesis and storage targets that contribute to etiology of hepatic steatosis.


Subject(s)
Aging , Hepatocyte Nuclear Factor 3-beta/genetics , Liver/pathology , Nuclear Lamina/genetics , Animals , Humans , Mice
6.
Cancer Discov ; 5(10): 1058-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26229090

ABSTRACT

UNLABELLED: B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We used a novel approach called "pinpointing enhancer-associated rearrangements by chromatin immunoprecipitation," or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a "pseudo-double-hit" t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma. SIGNIFICANCE: We demonstrate a novel approach for simultaneous detection of genomic rearrangements and enhancer activity in tumor biopsies. We identify novel mechanisms of enhancer-driven regulation of the oncogenes MYC and BCL6, and show that the BCL6 locus can serve as an enhancer donor in an "enhancer hijacking" translocation.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/genetics , Oncogenes , Acetylation , Cell Line, Tumor , Chromatin Immunoprecipitation , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 8 , DNA-Binding Proteins/genetics , Gene Duplication , Genes, myc , Genetic Predisposition to Disease , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Histones/metabolism , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, Mantle-Cell/diagnosis , Lymphoma, Mantle-Cell/genetics , MEF2 Transcription Factors/metabolism , Polymorphism, Genetic , Protein Binding , Proto-Oncogene Proteins c-bcl-6 , Recombination, Genetic , Translocation, Genetic , p300-CBP Transcription Factors/metabolism
7.
Nat Cell Biol ; 17(1): 44-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25503565

ABSTRACT

Insulin resistance is a cardinal feature of Type 2 diabetes (T2D) and a frequent complication of multiple clinical conditions, including obesity, ageing and steroid use, among others. How such a panoply of insults can result in a common phenotype is incompletely understood. Furthermore, very little is known about the transcriptional and epigenetic basis of this disorder, despite evidence that such pathways are likely to play a fundamental role. Here, we compare cell autonomous models of insulin resistance induced by the cytokine tumour necrosis factor-α or by the steroid dexamethasone to construct detailed transcriptional and epigenomic maps associated with cellular insulin resistance. These data predict that the glucocorticoid receptor and vitamin D receptor are common mediators of insulin resistance, which we validate using gain- and loss-of-function studies. These studies define a common transcriptional and epigenomic signature in cellular insulin resistance enabling the identification of pathogenic mechanisms.


Subject(s)
Dexamethasone/pharmacology , Insulin Resistance/genetics , Receptors, Calcitriol/metabolism , Receptors, Glucocorticoid/metabolism , Tumor Necrosis Factor-alpha/pharmacology , 3T3 Cells , Adipogenesis/genetics , Adipose Tissue/metabolism , Animals , Base Sequence , Biological Transport/drug effects , Cell Line , Diabetes Mellitus, Type 2/pathology , Epigenomics , Female , High-Throughput Nucleotide Sequencing , Histones/genetics , Histones/metabolism , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/pathology , Protein Binding , Receptors, Calcitriol/genetics , Sequence Analysis, DNA , Transcription Factor RelA/genetics , Transcription, Genetic/genetics
8.
Nature ; 518(7539): 337-43, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25363779

ABSTRACT

Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory element annotations, derived by mapping RNA and chromatin in primary immune cells, including resting and stimulated CD4(+) T-cell subsets, regulatory T cells, CD8(+) T cells, B cells, and monocytes. We find that ∼90% of causal variants are non-coding, with ∼60% mapping to immune-cell enhancers, many of which gain histone acetylation and transcribe enhancer-associated RNA upon immune stimulation. Causal variants tend to occur near binding sites for master regulators of immune differentiation and stimulus-dependent gene activation, but only 10-20% directly alter recognizable transcription factor binding motifs. Rather, most non-coding risk variants, including those that alter gene expression, affect non-canonical sequence determinants not well-explained by current gene regulatory models.


Subject(s)
Autoimmune Diseases/genetics , Epigenesis, Genetic/genetics , Polymorphism, Single Nucleotide/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Base Sequence , Chromatin/genetics , Consensus Sequence/genetics , Enhancer Elements, Genetic/genetics , Epigenomics , Genome-Wide Association Study , Humans , Nucleotide Motifs , Organ Specificity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcription Factors/metabolism
9.
Cloning Stem Cells ; 11(3): 417-26, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19622035

ABSTRACT

Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of mutagenic effects due to genetic manipulation.


Subject(s)
Cell Dedifferentiation/drug effects , Fibroblast Growth Factor 2/pharmacology , Fibroblasts/cytology , Induced Pluripotent Stem Cells/cytology , Models, Biological , Oxygen/pharmacology , Adult , Carrier Proteins/biosynthesis , Cell Culture Techniques , Cyclooxygenase 2/biosynthesis , Fibroblasts/metabolism , Homeodomain Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Nanog Homeobox Protein , Nuclear Proteins/biosynthesis , Octamer Transcription Factor-3/biosynthesis , RNA-Binding Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL