Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Thromb Haemost ; 21(12): 3589-3596, 2023 12.
Article in English | MEDLINE | ID: mdl-37734715

ABSTRACT

BACKGROUND: Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome associated with adenoviral vector vaccines for COVID-19. The syndrome is characterized by thrombosis, anti-platelet factor 4 (PF4) antibodies, thrombocytopenia, high D-dimer, and hypofibrinogenemia. OBJECTIVES: To investigate abnormalities in fibrinolysis that contribute to the clinical features of VITT. METHODS: Plasma samples from 18 suspected VITT cases were tested for anti-PF4 by ELISA and characterized as meeting criteria for VITT (11/18) or deemed unlikely (7/18; non-VITT). Antigen levels of PAI-1, factor XIII (FXIII), plasmin-α2antiplasmin (PAP), and inflammatory markers were quantified. Plasmin generation was quantified by chromogenic substrate. Western blotting was performed with antibodies to fibrinogen, FXIII-A, and plasminogen. RESULTS: VITT patients 10/11 had scores indicative of overt disseminated intravascular coagulation, while 0/7 non-VITT patients met the criteria. VITT patients had significantly higher levels of inflammatory markers, IL-1ß, IL-6, IL-8, TNFα, and C-reactive protein. In VITT patients, both fibrinogen and FXIII levels were significantly lower, while PAP and tPA-mediated plasmin generation were higher compared to non-VITT patients. Evidence of fibrinogenolysis was observed in 9/11 VITT patients but not in non-VITT patients or healthy controls. Fibrinogen degradation products were apparent, with obvious cleavage of the fibrinogen α-chain. PAP complex was evident in those VITT patients with fibrinogenolysis, but not in non-VITT patients or healthy donors. CONCLUSION: VITT patients show evidence of overt disseminated intravascular coagulation and fibrinogenolysis, mediated by dysregulated plasmin generation, as evidenced by increased PAP and plasmin generation. These observations are consistent with the clinical presentation of both thrombosis and bleeding in VITT.


Subject(s)
Disseminated Intravascular Coagulation , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Thrombosis , Vaccines , Humans , Fibrinolysis , Fibrinolysin , Disseminated Intravascular Coagulation/chemically induced , Disseminated Intravascular Coagulation/diagnosis , COVID-19 Vaccines/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Thrombosis/etiology , Fibrinogen
2.
Front Cardiovasc Med ; 10: 1225243, 2023.
Article in English | MEDLINE | ID: mdl-37745127

ABSTRACT

The 2023 annual meeting of the British Society for Haemostasis and Thrombosis (BSHT) was held in Birmingham, United Kingdom. The theme of this year's meeting was novel therapeutics and emerging technology. Here, the exciting research presented at the meeting is discussed.

3.
Res Pract Thromb Haemost ; 7(5): 100200, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37601014

ABSTRACT

Background: Factor XIII (FXIII) is an important proenzyme in the hemostatic system. The plasma-derived enzyme activated FXIII cross-links fibrin fibers within thrombi to increase their mechanical strength and cross-links fibrin to fibrinolytic inhibitors, specifically α2-antiplasmin, to increase resistance to fibrinolysis. We have previously shown that cellular FXIII (factor XIII-A [FXIII-A]), which is abundant in the platelet cytoplasm, is externalized onto the activated membrane and cross-links extracellular substrates. The contribution of cellular FXIII-A to platelet activation and platelet function has not been extensively studied. Objectives: This study aims to identify the role of platelet FXIII-A in platelet function. Methods: We used normal healthy platelets with a cell permeable FXIII inhibitor and platelets from FXIII-deficient patients as a FXIII-free platelet model in a range of platelet function and clotting tests. Results: Our data demonstrate that platelet FXIII-A enhances fibrinogen binding to the platelet surface upon agonist stimulation and improves the binding of platelets to fibrinogen and aggregation under flow in a whole-blood thrombus formation assay. In the absence of FXIII-A, platelets show reduced sensitivity to agonist stimulation, including decreased P-selectin exposure and fibrinogen binding. We show that FXIII-A is involved in platelet spreading where a lack of FXIII-A reduces the ability of platelets to fully spread on fibrinogen and collagen. Our data demonstrate that platelet FXIII-A is important for clot retraction where clots formed in its absence retracted to a lesser extent. Conclusion: Overall, this study shows that platelet FXIII-A functions during thrombus formation by aiding platelet activation and thrombus retraction in addition to its antifibrinolytic roles.

4.
Front Med (Lausanne) ; 10: 1212201, 2023.
Article in English | MEDLINE | ID: mdl-37332750

ABSTRACT

The hemostatic and innate immune system are intertwined processes. Inflammation within the vasculature promotes thrombus development, whilst fibrin forms part of the innate immune response to trap invading pathogens. The awareness of these interlinked process has resulted in the coining of the terms "thromboinflammation" and "immunothrombosis." Once a thrombus is formed it is up to the fibrinolytic system to resolve these clots and remove them from the vasculature. Immune cells contain an arsenal of fibrinolytic regulators and plasmin, the central fibrinolytic enzyme. The fibrinolytic proteins in turn have diverse roles in immunoregulation. Here, the intricate relationship between the fibrinolytic and innate immune system will be discussed.

5.
Front Cardiovasc Med ; 10: 1146833, 2023.
Article in English | MEDLINE | ID: mdl-37153474

ABSTRACT

The superfamily of serine protease inhibitors (SERPINs) are a class of inhibitors that utilise a dynamic conformational change to trap and inhibit their target enzymes. Their powerful nature lends itself well to regulation of complex physiological enzymatic cascades, such as the haemostatic, inflammatory and complement pathways. The SERPINs α2-antiplasmin, plasminogen-activator inhibitor-1, plasminogen-activator inhibitor-2, protease nexin-1, and C1-inhibitor play crucial inhibitory roles in regulation of the fibrinolytic system and inflammation. Elevated levels of these SERPINs are associated with increased risk of thrombotic complications, obesity, type 2 diabetes, and hypertension. Conversely, deficiencies of these SERPINs have been linked to hyperfibrinolysis with bleeding and angioedema. In recent years SERPINs have been implicated in the modulation of the immune response and various thromboinflammatory conditions, such as sepsis and COVID-19. Here, we highlight the current understanding of the physiological role of SERPINs in haemostasis and inflammatory disease progression, with emphasis on the fibrinolytic pathway, and how this becomes dysregulated during disease. Finally, we consider the role of these SERPINs as potential biomarkers of disease progression and therapeutic targets for thromboinflammatory diseases.

6.
Platelets ; 34(1): 2206921, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37139869

ABSTRACT

Statins inhibit the mevalonate pathway by impairing protein prenylation via depletion of lipid geranylgeranyl diphosphate (GGPP). Rab27b and Rap1a are small GTPase proteins involved in dense granule secretion, platelet activation, and regulation. We analyzed the impact of statins on prenylation of Rab27b and Rap1a in platelets and the downstream effects on fibrin clot properties. Whole blood thromboelastography revealed that atorvastatin (ATV) delayed clot formation time (P < .005) and attenuated clot firmness (P < .005). ATV pre-treatment inhibited platelet aggregation and clot retraction. Binding of fibrinogen and P-selectin exposure on stimulated platelets was significantly lower following pre-treatment with ATV (P < .05). Confocal microscopy revealed that ATV significantly altered the structure of platelet-rich plasma clots, consistent with the reduced fibrinogen binding. ATV enhanced lysis of Chandler model thrombi 1.4-fold versus control (P < .05). Western blotting revealed that ATV induced a dose-dependent accumulation of unprenylated Rab27b and Rap1a in the platelet membrane. ATV dose-dependently inhibited ADP release from activated platelets. Exogenous GGPP rescued the prenylation of Rab27b and Rap1a, and partially restored the ADP release defect, suggesting these changes arise from reduced prenylation of Rab27b. These data demonstrate that statins attenuate platelet aggregation, degranulation, and binding of fibrinogen thereby having a significant impact on clot contraction and structure.


What is the context? Statins such as Atorvastatin (ATV) are 3-hydroxy, 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which block the cholesterol biosynthetic pathway to lower total serum levels and LDL-cholesterol.The cholesterol pathway also provides a supply of isoprenoids (farnesyl and geranylgeranyl) for the prenylation of signaling molecules, which include the families of Ras and Rho small GTPases.Prenyl groups provide a membrane anchor that is essential for the correct membrane localization and function of these proteins.Statins deplete cells of lipid geranylgeranyl diphosphate (GGPP) thereby inhibiting progression of the mevalonate pathway and prenylation of proteins.Rab27b and Rap1 are small GTPase proteins in platelets that are involved in the secretion of platelet granules and integrin activation.What is new?In this study, we found that ATV impairs prenylation of Rab27b and Rap1a and attenuates platelet function.These effects were partially rescued by GGPP, indicating the involvement of the mevalonate pathway.Platelet aggregation and degranulation was significantly attenuated by ATV.The impact of statins on platelet function altered clot formation, structure and contraction generating a clot that was more susceptible to degradation.What is the impact?This study demonstrates a novel mechanism whereby statins alter platelet responses and ultimately clot structure and stability.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Thrombosis , Humans , Adenosine Diphosphate/metabolism , Atorvastatin/pharmacology , Blood Platelets/metabolism , Fibrinogen/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Prenylation , rab GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/metabolism , Thrombosis/drug therapy , Thrombosis/metabolism
7.
Front Cardiovasc Med ; 10: 1159938, 2023.
Article in English | MEDLINE | ID: mdl-36895837
8.
Front Cardiovasc Med ; 9: 1054541, 2022.
Article in English | MEDLINE | ID: mdl-36531720

ABSTRACT

The formation of thrombi is shaped by intravascular shear stress, influencing both fibrin architecture and the cellular composition which has downstream implications in terms of stability against mechanical and fibrinolytic forces. There have been many advancements in the development of models that incorporate flow rates akin to those found in vivo. Both thrombus formation and breakdown are simultaneous processes, the balance of which dictates the size, persistence and resolution of thrombi. Therefore, there is a requirement to have models which mimic the physiological shear experienced within the vasculature which in turn influences the fibrinolytic degradation of the thrombus. Here, we discuss various assays for fibrinolysis and importantly the development of novel models that incorporate physiological shear rates. These models are essential tools to untangle the molecular and cellular processes which govern fibrinolysis and can recreate the conditions within normal and diseased vessels to determine how these processes become perturbed in a pathophysiological setting. They also have utility to assess novel drug targets and antithrombotic drugs that influence thrombus stability.

9.
J Thromb Haemost ; 20(10): 2394-2406, 2022 10.
Article in English | MEDLINE | ID: mdl-35780481

ABSTRACT

BACKGROUND: Severe COVID-19 disease is associated with thrombotic complications and extensive fibrin deposition. This study investigates whether the hemostatic complications in COVID-19 disease arise due to dysregulation of the fibrinolytic system. METHODS: This prospective study analyzed fibrinolytic profiles of 113 patients hospitalized with COVID-19 disease with 24 patients with non-COVID-19 respiratory infection and healthy controls. Antigens were quantified by Ella system or ELISA, clot lysis by turbidimetric assay, and plasminogen activator inhibitor-1 (PAI-1)/plasmin activity using chromogenic substrates. Clot structure was visualized by confocal microscopy. RESULTS: PAI-1 and its cofactor, vitronectin, are significantly elevated in patients with COVID-19 disease compared with those with non-COVID-19 respiratory infection and healthy control groups. Thrombin activatable fibrinolysis inhibitor and tissue plasminogen activator were elevated in patients with COVID-19 disease relative to healthy controls. PAI-1 and tissue plasminogen activator (tPA) were associated with more severe COVID-19 disease severity. Clots formed from COVID-19 plasma demonstrate an altered fibrin network, with attenuated fiber length and increased branching. Functional studies reveal that plasmin generation and clot lysis were markedly attenuated in COVID-19 disease, while PAI-1 activity was elevated. Clot lysis time significantly correlated with PAI-1 levels. Stratification of COVID-19 samples according to PAI-1 levels reveals significantly faster lysis when using the PAI-1 resistant (tPA) variant, tenecteplase, over alteplase lysis. CONCLUSION: This study shows that the suboptimal fibrinolytic response in COVID-19 disease is directly attributable to elevated levels of PAI-1, which attenuate plasmin generation. These data highlight the important prognostic potential of PAI-1 and the possibility of using pre-existing drugs, such as tenecteplase, to treat COVID-19 disease and potentially other respiratory diseases.


Subject(s)
COVID-19 Drug Treatment , Carboxypeptidase B2 , Hemostatics , Thrombosis , Chromogenic Compounds , Fibrin , Fibrinolysin/pharmacology , Fibrinolysis , Hemostatics/pharmacology , Humans , Plasminogen Activator Inhibitor 1 , Prospective Studies , Tenecteplase , Thrombosis/drug therapy , Tissue Plasminogen Activator/pharmacology , Vitronectin
10.
Int J Mol Sci ; 23(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35328366

ABSTRACT

Loss of fibrinogen is a feature of trauma-induced coagulopathy (TIC), and restoring this clotting factor is protective against hemorrhages. We compared the efficacy of cryoprecipitate, and of the fibrinogen concentrates RiaSTAP® and FibCLOT® in restoring the clot integrity in models of TIC. Cryoprecipitate and FibCLOT® produced clots with higher maximal absorbance and enhanced resistance to lysis relative to RiaSTAP®. The fibrin structure of clots, comprising cryoprecipitate and FibCLOT®, mirrored those of normal plasma, whereas those with RiaSTAP® showed stunted fibers and reduced porosity. The hemodilution of whole blood reduced the maximum clot firmness (MCF) as assessed by thromboelastography. MCF could be restored with the inclusion of 1 mg/mL of fibrinogen, but only FibCLOT® was effective at stabilizing against lysis. The overall clot strength, measured using the Quantra® hemostasis analyzer, was restored with both fibrinogen concentrates but not cryoprecipitate. α2antiplasmin and plasminogen activator inhibitor-1 (PAI-1) were constituents of cryoprecipitate but were negligible in RiaSTAP® and FibCLOT®. Interestingly, cryoprecipitate and FibCLOT® contained significantly higher factor XIII (FXIII) levels, approximately three-fold higher than RiaSTAP®. Our data show that 1 mg/mL fibrinogen, a clinically achievable concentration, can restore adequate clot integrity. However, FibCLOT®, which contained more FXIII, was superior in normalizing the clot structure and in stabilizing hemodiluted clots against mechanical and fibrinolytic degradation.


Subject(s)
Blood Coagulation Disorders , Hemostatics , Thrombosis , Factor XIII/pharmacology , Factor XIII/therapeutic use , Fibrin/chemistry , Fibrinogen/metabolism , Humans , Thrombelastography
11.
Front Cardiovasc Med ; 9: 1070502, 2022.
Article in English | MEDLINE | ID: mdl-36741833

ABSTRACT

Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.

12.
Int J Mol Sci ; 22(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205443

ABSTRACT

Factor XIII (FXIII) is a transglutaminase that promotes thrombus stability by cross-linking fibrin. The cellular form, a homodimer of the A subunits, denoted FXIII-A, lacks a classical signal peptide for its release; however, we have shown that it is exposed on activated platelets. Here we addressed whether monocytes expose intracellular FXIII-A in response to stimuli. Using flow cytometry, we demonstrate that FXIII-A antigen and activity are up-regulated on human monocytes in response to stimulation by IL-4 and IL-10. Higher basal levels of the FXIII-A antigen were noted on the membrane of the monocytic cell line THP-1, but activity was significantly enhanced following stimulation with IL-4 and IL-10. In contrast, treatment with lipopolysaccharide did not upregulate exposure of FXIII-A in THP-1 cells. Quantification of the FXIII-A activity revealed a significant increase in THP-1 cells in total cell lysates following stimulation with IL-4 and IL-10. Following fractionation, the largest pool of FXIII-A was membrane associated. Monocytes were actively incorporated into the fibrin mesh of model thrombi. We found that stimulation of monocytes and THP-1 cells with IL-4 and IL-10 stabilized FXIII-depleted thrombi against fibrinolytic degradation, via a transglutaminase-dependent mechanism. Our data suggest that monocyte-derived FXIII-A externalized in response to stimuli participates in thrombus stabilization.


Subject(s)
Factor XIIIa/metabolism , Monocytes/metabolism , Thrombosis/metabolism , Healthy Volunteers , Humans , THP-1 Cells/metabolism
13.
Front Cardiovasc Med ; 8: 653655, 2021.
Article in English | MEDLINE | ID: mdl-33937363

ABSTRACT

Plasminogen activator inhibitor 1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily. PAI-1 is the principal inhibitor of the plasminogen activators, tissue plasminogen activator (tPA), and urokinase-type plasminogen activator (uPA). Turbulence in the levels of PAI-1 tilts the balance of the hemostatic system resulting in bleeding or thrombotic complications. Not surprisingly, there is strong evidence that documents the role of PAI-1 in cardiovascular disease. The more recent uncovering of the coalition between the hemostatic and inflammatory pathways has exposed a distinct role for PAI-1. The storm of proinflammatory cytokines liberated during inflammation, including IL-6 and TNF-α, directly influence PAI-1 synthesis and increase circulating levels of this serpin. Consequently, elevated levels of PAI-1 are commonplace during infection and are frequently associated with a hypofibrinolytic state and thrombotic complications. Elevated PAI-1 levels are also a feature of metabolic syndrome, which is defined by a cluster of abnormalities including obesity, type 2 diabetes, hypertension, and elevated triglyceride. Metabolic syndrome is in itself defined as a proinflammatory state associated with elevated levels of cytokines. In addition, insulin has a direct impact on PAI-1 synthesis bridging these pathways. This review describes the key physiological functions of PAI-1 and how these become perturbed during disease processes. We focus on the direct relationship between PAI-1 and inflammation and the repercussion in terms of an ensuing hypofibrinolytic state and thromboembolic complications. Collectively, these observations strengthen the utility of PAI-1 as a viable drug target for the treatment of various diseases.

14.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802692

ABSTRACT

Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.


Subject(s)
Factor XIIIa/metabolism , Hemostasis , Wound Healing , Blood Vessels/metabolism , Drug Delivery Systems , Factor XIIIa/chemistry , Humans , Models, Biological
15.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672724

ABSTRACT

The resolution of arterial thrombi is critically dependent on the endogenous fibrinolytic system. Using well-established and complementary whole blood models, we investigated the endogenous fibrinolytic potential of the tissue-type plasminogen activator (tPA) and the intra-thrombus distribution of fibrinolytic proteins, formed ex vivo under shear. tPA was present at physiologically relevant concentrations and fibrinolysis was monitored using an FITC-labelled fibrinogen tracer. Thrombi were formed from anticoagulated blood using a Chandler Loop and from non-anticoagulated blood perfused over specially-prepared porcine aorta strips under low (212 s-1) and high shear (1690 s-1) conditions in a Badimon Chamber. Plasminogen, tPA and plasminogen activator inhibitor-1 (PAI-1) concentrations were measured by ELISA. The tPA-PAI-1 complex was abundant in Chandler model thrombi serum. In contrast, free tPA was evident in the head of thrombi and correlated with fibrinolytic activity. Badimon thrombi formed under high shear conditions were more resistant to fibrinolysis than those formed at low shear. Plasminogen and tPA concentrations were elevated in thrombi formed at low shear, while PAI-1 concentrations were augmented at high shear rates. In conclusion, tPA primarily localises to the thrombus head in a free and active form. Thrombi formed at high shear incorporate less tPA and plasminogen and increased PAI-1, thereby enhancing resistance to degradation.


Subject(s)
Fibrinolysis , Shear Strength , Stress, Mechanical , Thrombosis/metabolism , Tissue Plasminogen Activator/metabolism , Animals , Fibrin/metabolism , Humans , Plasminogen/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Swine
16.
Haematologica ; 106(2): 522-531, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32029503

ABSTRACT

Tissue plasminogen activator (tPA) and urokinase (uPA) differ in their modes of action. Efficient tPA-mediated plasminogen activation requires binding to fibrin. In contrast, uPA is fibrin independent and activates plasminogen in solution or when associated with its cellular receptor uPAR. We have previously shown that polyphosphate (polyP), alters fibrin structure and attenuates tPA and plasminogen binding to fibrin, thereby down-regulating fibrinolysis. Here we investigate the impact of polyP on uPA-mediated fibrinolysis. As previously reported polyP of an average chain length of 65 (polyP65) delays tPA-mediated fibrinolysis. The rate of plasmin generation was also delayed and reduced 1.6-fold in polyP65-containing clots (0.74 ± 0.06 vs. 1.17 ± 0.14 pM/s in P < 0.05). Analysis of tPA-mediated fibrinolysis in real-time by confocal microscopy was significantly slower in polyP65-containing clots. In marked contrast, polyP65 augmented the rate of uPA-mediated plasmin generation 4.7-fold (3.96 ± 0.34 vs. 0.84 ± 0.08 pM/s; P < 0.001) and accelerated fibrinolysis (t1/2 64.5 ± 1.7 min vs. 108.2 ± 3.8 min; P < 0.001). Analysis of lysis in real-time confirmed that polyP65 enhanced uPA-mediated fibrinolysis. Varying the plasminogen concentration (0.125 to 1 µM) in clots dose-dependently enhanced uPA-mediated fibrinolysis, while negligible changes were observed on tPA-mediated fibrinolysis. The accelerating effect of polyP65 on uPA-mediated fibrinolysis was overcome by additional plasminogen, while the down-regulation of tPA-mediated lysis and plasmin generation was largely unaffected. PolyP65 exerts opposing effects on tPA- and uPA-mediated fibrinolysis, attenuating the fibrin cofactor function in tPA-mediated plasminogen activation. In contrast, polyP may facilitate the interaction between fibrin-independent uPA and plasminogen thereby accelerating plasmin generation and downstream fibrinolysis.


Subject(s)
Tissue Plasminogen Activator , Urokinase-Type Plasminogen Activator , Fibrinolysin , Fibrinolysis , Humans , Plasminogen , Polyphosphates
17.
Blood ; 137(2): 248-257, 2021 01 14.
Article in English | MEDLINE | ID: mdl-32842150

ABSTRACT

Plasminogen activation rates are enhanced by cell surface binding. We previously demonstrated that exogenous plasminogen binds to phosphatidylserine-exposing and spread platelets. Platelets contain plasminogen in their α-granules, but secretion of plasminogen from platelets has not been studied. Recently, a novel transmembrane lysine-dependent plasminogen receptor, Plg-RKT, has been described on macrophages. Here, we analyzed the pool of plasminogen in platelets and examined whether platelets express Plg-RKT. Plasminogen content of the supernatant of resting and collagen/thrombin-stimulated platelets was similar. Pretreatment with the lysine analog, ε-aminocaproic acid, significantly increased platelet-derived plasminogen (0.33 vs 0.08 nmol/108 platelets) in the stimulated supernatant, indicating a lysine-dependent mechanism of membrane retention. Lysine-dependent, platelet-derived plasminogen retention on thrombin and convulxin activated human platelets was confirmed by flow cytometry. Platelets initiated fibrinolytic activity in fluorescently labeled plasminogen-deficient clots and in turbidimetric clot lysis assays. A 17-kDa band, consistent with Plg-RKT, was detected in the platelet membrane fraction by western blotting. Confocal microscopy of stimulated platelets revealed Plg-RKT colocalized with platelet-derived plasminogen on the activated platelet membrane. Plasminogen exposure was significantly attenuated in thrombin- and convulxin-stimulated platelets from Plg-RKT-/- mice compared with Plg-RKT+/+ littermates. Membrane exposure of Plg-RKT was not dependent on plasminogen, as similar levels of the receptor were detected in plasminogen-/- platelets. These data highlight Plg-RKT as a novel plasminogen receptor in human and murine platelets. We show for the first time that platelet-derived plasminogen is retained on the activated platelet membrane and drives local fibrinolysis by enhancing cell surface-mediated plasminogen activation.


Subject(s)
Blood Platelets/metabolism , Plasminogen/metabolism , Platelet Activation/physiology , Receptors, Cell Surface/metabolism , Animals , Humans , Mice
18.
Haematologica ; 105(12): 2824-2833, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33256381

ABSTRACT

Platelets harbor the primary reservoir of circulating plasminogen activator inhibitor 1 (PAI-1), but the reportedly low functional activity of this pool of inhibitor has led to debate over its contribution to thrombus stability. Here we analyze the fate of PAI-1 secreted from activated platelets and examine its role in maintaining thrombus integrity. Activation of platelets results in translocation of PAI-1 to the outer leaflet of the membrane, with maximal exposure in response to strong dual agonist stimulation. PAI-1 is found to co-localize in the cap of PS-exposing platelets with its cofactor, vitronectin, and fibrinogen. Inclusion of tirofiban or Gly-Pro-Arg-Pro significantly attenuated exposure of PAI-1, indicating a crucial role for integrin αIIbß3 and fibrin in delivery of PAI-1 to the activated membrane. Separation of platelets post-stimulation into soluble and cellular components revealed the presence of PAI-1 antigen and activity in both fractions, with approximately 40% of total platelet-derived PAI-1 remaining associated with the cellular fraction. Using a variety of fibrinolytic models we found that platelets produce a strong stabilizing effect against tPA-mediated clot lysis. Platelet lysate, as well as soluble and cellular fractions stabilize thrombi against premature degradation in a PAI-1 dependent manner. Our data show for the first time that a functional pool of PAI-1 is anchored to the membrane of stimulated platelets and regulates local fibrinolysis. We reveal a key role for integrin αIIbß3 and fibrin in delivery of PAI-1 from platelet α-granules to the activated membrane. These data suggest that targeting platelet-associated PAI-1 may represent a viable target for novel profibrinolytic agents.


Subject(s)
Blood Platelets , Plasminogen Activator Inhibitor 1 , Fibrinolysis , Humans , Platelet Activation , Tissue Plasminogen Activator
19.
J Thromb Haemost ; 18(9): 2209-2214, 2020 09.
Article in English | MEDLINE | ID: mdl-32634856

ABSTRACT

BACKGROUND: Thrombomodulin-associated coagulopathy (TM-AC) is a rare bleeding disorder in which a single reported p.Cys537* variant in the thrombomodulin gene THBD causes high plasma thrombomodulin (TM) levels. High TM levels attenuate thrombin generation and delay fibrinolysis. OBJECTIVES: To report the characteristics of pedigree with a novel THBD variant causing TM-AC, and co-inherited deficiency of thrombin-activatable fibrinolysis inhibitor (TAFI). PATIENTS/METHODS: Identification of pathogenic variants in hemostasis genes by next-generation sequencing and case recall for deep phenotyping. RESULTS: Pedigree members with a previously reported THBD variant predicting p.Pro496Argfs*10 and chain truncation in TM transmembrane domain had abnormal bleeding and greatly increased plasma TM levels. Affected cases had attenuated thrombin generation and delayed fibrinolysis similar to previous reported TM_AC cases with THBD p.Cys537*. Coincidentally, some pedigree members also harbored a stop-gain variant in CPB2 encoding TAFI. This reduced plasma TAFI levels but was asymptomatic. Pedigree members with TM-AC caused by the p.Pro496Argfs*10 THBD variant and also TAFI deficiency had a partially attenuated delay in fibrinolysis, but no change in the defective thrombin generation. CONCLUSIONS: These data extend the reported genetic repertoire of TM-AC and establish a common molecular pathogenesis arising from high plasma levels of TM extra-cellular domain. The data further confirm that the delay in fibrinolysis associated with TM-AC is directly linked to increased TAFI activation. The combination of the rare variants in the pedigree members provides a unique genetic model to develop understanding of the thrombin-TM system and its regulation of TAFI.


Subject(s)
Blood Coagulation Disorders , Carboxypeptidase B2 , Carboxypeptidase B2/genetics , Fibrinolysis/genetics , Humans , Pedigree , Thrombin , Thrombomodulin/genetics
20.
J Thromb Haemost ; 18(7): 1548-1555, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32329246

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) is associated with the development of acute respiratory distress syndrome (ARDS), which requires ventilation in critically ill patients. The pathophysiology of ARDS results from acute inflammation within the alveolar space and prevention of normal gas exchange. The increase in proinflammatory cytokines within the lung leads to recruitment of leukocytes, further propagating the local inflammatory response. A consistent finding in ARDS is the deposition of fibrin in the air spaces and lung parenchyma. COVID-19 patients show elevated D-dimers and fibrinogen. Fibrin deposits are found in the lungs of patients due to the dysregulation of the coagulation and fibrinolytic systems. Tissue factor (TF) is exposed on damaged alveolar endothelial cells and on the surface of leukocytes promoting fibrin deposition, while significantly elevated levels of plasminogen activator inhibitor 1 (PAI-1) from lung epithelium and endothelial cells create a hypofibrinolytic state. Prophylaxis treatment of COVID-19 patients with low molecular weight heparin (LMWH) is important to limit coagulopathy. However, to degrade pre-existing fibrin in the lung it is essential to promote local fibrinolysis. In this review, we discuss the repurposing of fibrinolytic drugs, namely tissue-type plasminogen activator (tPA), to treat COVID-19 associated ARDS. tPA is an approved intravenous thrombolytic treatment, and the nebulizer form has been shown to be effective in plastic bronchitis and is currently in Phase II clinical trial. Nebulizer plasminogen activators may provide a targeted approach in COVID-19 patients to degrade fibrin and improving oxygenation in critically ill patients.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Drug Repositioning , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...