Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
New Phytol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137959

ABSTRACT

In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.

2.
Chemphyschem ; : e202400173, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845571

ABSTRACT

Raman spectroscopy was used to study the complex interactions and morphogenesis of the green seaweed Ulva (Chlorophyta) and its associated bacteria under controlled conditions in a reductionist model system. Integrating multiple imaging techniques contributes to a more comprehensive understanding of these biological processes. Therefore, Raman spectroscopy was introduced as a non-invasive, label-free tool for examining chemical information of the tripartite community Ulva mutabilis-Roseovarius sp.-Maribacter sp. The study explored cell differentiation, cell wall protrusion, and bacterial-macroalgae interactions of intact algal thalli. Using Raman spectroscopy, the analysis of the CHx-stretching wavenumber region distinguished spatial regions in Ulva germination and cellular malformations under axenic conditions and upon inoculation with a specific bacterium in bipartite communities. The spectral information was used to guide in-depth analyses within the fingerprint region and to identify substance classes such as proteins, lipids, and polysaccharides, including evidence for ulvan found in cell wall protrusions.

3.
Chemistry ; 30(18): e202304007, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38271285

ABSTRACT

A fully enantioselective, catalytic synthesis of the algal morphogen (-)-thallusin using polyene cyclization chemistry is reported. The synthesis features dedicated precursor design, introduction of a TMS-substituted arene as a regioselective terminator, very high enantiomer excess (ee) on gram scale, and productive scaffold functionalization. Furthermore, an ee determination methodology of thallusin samples was developed, and the ee of biosynthesized thallusin was determined. Fe(III)-uptake studies demonstrated that the cellular uptake of iron facilitated by thallusin derivatives was independent of their morphogenic activity, suggesting their active import via siderophore transporters as a shuttle system.


Subject(s)
Pyridines , Seaweed , Ulva , Ferric Compounds , Stereoisomerism , Siderophores
4.
J Phycol ; 59(3): 433-440, 2023 06.
Article in English | MEDLINE | ID: mdl-37256696

ABSTRACT

Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.


Subject(s)
Chlorophyta , Seaweed , Ulva , Ecosystem , Systems Biology
5.
Semin Cell Dev Biol ; 134: 69-78, 2023 01 30.
Article in English | MEDLINE | ID: mdl-35459546

ABSTRACT

The marine green macroalga Ulva (Chlorophyta, Ulvales), also known as sea lettuce, coexists with a diverse microbiome. Many Ulva species proliferate in nature and form green algal blooms ("green tides"), which can occur when nutrient-rich wastewater from agricultural or densely populated areas is flushed into the sea. Bacteria are necessary for the adhesion of Ulva to its substrate, its growth, and the development of its blade morphology. In the absence of certain bacteria, Ulva mutabilis develops into a callus-like morphotype. However, with the addition of the necessary marine bacteria, the entire morphogenesis can be restored. Surprisingly, just two bacteria isolated from U. mutabilis are sufficient for inducing morphogenesis and establishing the reductionist system of a tripartite community. While one bacterial strain causes algal blade cell division, another causes the differentiation of basal cells into a rhizoid and supports cell wall formation because of a low concentration of the morphogen thallusin (below 10-10 mol/L). This review focuses on the research conducted on this topic since 2015, discusses how U. mutabilis has developed into a model organism in chemical ecology, and explores the questions that have already been addressed and the perspectives that a reductionist model system allows. In particular, the field of systems biology will achieve a comprehensive, quantitative understanding of the dynamic interactions between Ulva and its associated bacteria to better predict the behavior of the system as a whole. The reductionist approach has enabled the study of the bacteria-induced morphogenesis of Ulva. Specific questions regarding the optimization of cultivation conditions as well as the yield of raw materials for the food and animal feed industries can be answered in the laboratory and through applied science. Genome sequencing, the improvement of genetic engineering tools, and the first promising attempts to leverage macroalgae-microbe interactions in aquaculture make this model organism, which has a comparatively short parthenogenetic life cycle, attractive for both fundamental and applied research. The reviewed research paves the way for the synthetic biology of macroalgae-associated microbiomes in sustainable aquacultures.


Subject(s)
Chlorophyta , Seaweed , Ulva , Ulva/metabolism , Ulva/microbiology , Seaweed/microbiology , Aquaculture , Morphogenesis , Bacteria
6.
Mol Ecol ; 32(3): 703-723, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36326449

ABSTRACT

Microbes can modify their hosts' stress tolerance, thus potentially enhancing their ecological range. An example of such interactions is Ectocarpus subulatus, one of the few freshwater-tolerant brown algae. This tolerance is partially due to its (un)cultivated microbiome. We investigated this phenomenon by modifying the microbiome of laboratory-grown E. subulatus using mild antibiotic treatments, which affected its ability to grow in low salinity. Low salinity acclimation of these algal-bacterial associations was then compared. Salinity significantly impacted bacterial and viral gene expression, albeit in different ways across algal-bacterial communities. In contrast, gene expression of the host and metabolite profiles were affected almost exclusively in the freshwater-intolerant algal-bacterial communities. We found no evidence of bacterial protein production that would directly improve algal stress tolerance. However, vitamin K synthesis is one possible bacterial service missing specifically in freshwater-intolerant cultures in low salinity. In this condition, we also observed a relative increase in bacterial transcriptomic activity and the induction of microbial genes involved in the biosynthesis of the autoinducer AI-1, a quorum-sensing regulator. This could have resulted in dysbiosis by causing a shift in bacterial behaviour in the intolerant algal-bacterial community. Together, these results provide two promising hypotheses to be examined by future targeted experiments. Although they apply only to the specific study system, they offer an example of how bacteria may impact their host's stress response.


Subject(s)
Host Microbial Interactions , Phaeophyceae , Acclimatization/physiology , Symbiosis , Fresh Water , Phaeophyceae/genetics , Phaeophyceae/microbiology
7.
Mar Drugs ; 20(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36355014

ABSTRACT

Thallusin, a highly biologically active, phytohormone-like and bacterial compound-inducing morphogenesis of the green tide-forming macroalga Ulva (Chlorophyta), was determined in bacteria and algae cultures. A sensitive and selective method was developed for quantification based on ultra-high-performance liquid chromatography coupled with electrospray ionization and a high-resolution mass spectrometer. Upon C18 solid phase extraction of the water samples, thallusin was derivatized with iodomethane to inhibit the formation of Fe−thallusin complexes interfering with the chromatographic separation. The concentration of thallusin was quantified during the relevant phases of the bacterial growth of Maribacter spp., ranging from 0.16 ± 0.01 amol cell−1 (at the peak of the exponential growth phase) to 0.86 ± 0.13 amol cell−1 (late stationary phase), indicating its accumulation in the growth medium. Finally, we directly determined the concentration of thallusin in algal culture to validate our approach for monitoring applications. Detection and quantification limits of 2.5 and 7.4 pmol L−1, respectively, were reached, which allow for quantifying ecologically relevant thallusin concentrations. Our approach will enable the surveying of thallusin in culture and in nature and will thus contribute to the chemical monitoring of aquaculture.


Subject(s)
Chlorophyta , Pyridines , Ulva , Bacteria , Chromatography, High Pressure Liquid/methods , Plants , Ulva/microbiology
8.
Microbiol Resour Announc ; 11(11): e0068522, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36194130

ABSTRACT

We report the draft genome sequence of the marine gammaproteobacterium Halomonas sp. strain MS1, isolated from the green seaweed Ulva mutabilis (Chlorophyta), which releases metallophores fostering macroalga-bacterium interactions. The 4.6-Mbp sequence, which was obtained using PacBio technology, harbors 4,166 predicted coding sequences, including gene clusters for siderophore production.

9.
Metallomics ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-35881466

ABSTRACT

Organic matter regulates the availability of important trace elements in aquatic and terrestrial ecosystems by acting as a source and container for microbes. To overcome the limitation of trace elements, nitrogen-fixing bacteria, e.g. release low-molecular-weight chelators (metallophores), which scavenge the essential cofactors of the nitrogenase, iron, and molybdenum (Mo), via complexation and subsequent uptake. The formation of metallophores is triggered by limiting conditions, which must be replicated in the laboratory in order to study metallophores as a mediator in metal cycling. While ethylenediaminetetraacetic acid (EDTA)-based buffer systems for metal cations are well established, there is limited knowledge regarding the buffering of oxoanions such as molybdate in a bacterial growth medium. To mimic the availability of molybdenum in nature under laboratory conditions, this study created a Mo-buffer system for bacterial growth media of the model organisms Azotobacter vinelandii and Frankia sp. CH37. We investigated selected hydroxypyridinones (HPs) as potential molybdenum-chelating agents, determining the amount required for efficient molybdenum complexation by calculating speciation plots of the various candidate complexes in artificial growth media at various pH values. The Mo-maltol system was identified as an ideal, nontoxic molybdenum-buffer system. In the presence of the Mo-maltol system, the growth of Frankia sp. was limited under diazotrophic conditions, whereas A. vinelandii could acquire molybdenum through the release of protochelin and subsequent molybdenum uptake. The study paves the way for unravelling molybdenum recruitment and homeostasis under limiting conditions in bacteria.


Subject(s)
Nitrogen-Fixing Bacteria , Trace Elements , Chelating Agents , Ecosystem , Metals , Molybdenum , Nitrogen , Nitrogen Fixation , Nitrogen-Fixing Bacteria/metabolism , Nitrogenase/metabolism
10.
Angew Chem Int Ed Engl ; 61(39): e202206746, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35900916

ABSTRACT

Chemical mediators are key compounds for controlling symbiotic interactions in the environment. Here, we disclose a fully stereoselective total synthesis of the algae differentiation factor (-)-thallusin that utilizes sophisticated 6-endo-cyclization chemistry and effective late-stage sp2 -sp2 -couplings using non-toxic reagents. An EC50 of 4.8 pM was determined by quantitative phenotype profiling in the green seaweed Ulva mutabilis (Chlorophyte), underscoring this potent mediator's enormous, pan-species bioactivity produced by symbiotic bacteria. SAR investigations indicate that (-)-thallusin triggers at least two different pathways in Ulva that may be separated by chemical editing of the mediator compound structure.


Subject(s)
Seaweed , Ulva , Pyridines/chemistry , Seaweed/microbiology , Symbiosis , Ulva/genetics , Ulva/metabolism , Ulva/microbiology
11.
Beilstein J Org Chem ; 18: 722-731, 2022.
Article in English | MEDLINE | ID: mdl-35821696

ABSTRACT

Aromatic prenylated metabolites have important biological roles and activities in all living organisms. Compared to their importance in all domains of life, we know relatively little about their substrate scopes and metabolic functions. Here, we describe a new UbiA-like prenyltransferase (Ptase) Ubi-297 encoded in a conserved operon of several bacterial taxa, including marine Flavobacteria and the genus Sacchromonospora. In silico analysis of Ubi-297 homologs indicated that members of this Ptase group are composed of several transmembrane α-helices and carry a conserved and distinct aspartic-rich Mg2+-binding domain. We heterologously produced UbiA-like Ptases from the bacterial genera Maribacter, Zobellia, and Algoriphagus in Escherichia coli. Investigation of their substrate scope uncovered the preferential farnesylation of quinoline derivatives, such as 8-hydroxyquinoline-2-carboxylic acid (8-HQA) and quinaldic acid. The results of this study provide new insights into the abundance and diversity of Ptases in marine Flavobacteria and beyond.

12.
Front Microbiol ; 13: 805694, 2022.
Article in English | MEDLINE | ID: mdl-35308360

ABSTRACT

Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.

13.
Planta ; 255(4): 76, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35235070

ABSTRACT

MAIN CONCLUSION: We advance Ulva's genetic tractability and highlight its value as a model organism by characterizing its APAF1_C/WD40 domain-encoding gene, which belongs to a family that bears homology to R genes. The multicellular chlorophyte alga Ulva mutabilis (Ulvophyceae, Ulvales) is native to coastal ecosystems worldwide and attracts both high socio-economic and scientific interest. To further understand the genetic mechanisms that guide its biology, we present a protocol, based on adapter ligation-mediated PCR, for retrieving flanking sequences in U. mutabilis vector-insertion mutants. In the created insertional library, we identified a null mutant with an insertion in an apoptotic protease activating factor 1 helical domain (APAF1_C)/WD40 repeat domain-encoding gene. Protein domain architecture analysis combined with phylogenetic analysis revealed that this gene is a member of a subfamily that arose early in the evolution of green plants (Viridiplantae) through the acquisition of a gene that also encoded N-terminal nucleotide-binding adaptor shared by APAF-1, certain R-gene products and CED-4 (NB-ARC) and winged helix-like (WH-like) DNA-binding domains. Although phenotypic analysis revealed no mutant phenotype, gene expression levels in control plants correlated to the presence of bacterial symbionts, which U. mutabilis requires for proper morphogenesis. In addition, our analysis led to the discovery of a putative Ulva nucleotide-binding site and leucine-rich repeat (NBS-LRR) Resistance protein (R-protein), and we discuss how the emergence of these R proteins in green plants may be linked to the evolution of the APAF1_C/WD40 protein subfamily.


Subject(s)
Ulva , Ecosystem , Phylogeny , Plant Proteins/metabolism , Proteins/genetics , Ulva/genetics , WD40 Repeats
14.
BMC Plant Biol ; 22(1): 19, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991492

ABSTRACT

BACKGROUND: The molecular mechanism underlying sexual reproduction in land plants is well understood in model plants and is a target for crop improvement. However, unlike land plants, the genetic basis involved in triggering reproduction and gamete formation remains elusive in most seaweeds, which are increasingly viewed as an alternative source of functional food and feedstock for energy applications. RESULTS: Gametogenesis of Ulva mutabilis, a model organism for green seaweeds, was studied. We analyzed transcriptome dynamics at different time points during gametogenesis following induction of reproduction by fragmentation and removal of sporulation inhibitors. Analyses demonstrated that 45% of the genes in the genome were differentially expressed during gametogenesis. We identified several transcription factors that potentially play a key role in the early gametogenesis of Ulva given the function of their homologs in higher plants and microalgae. In particular, the detailed expression pattern of an evolutionarily conserved transcription factor containing an RWP-RK domain suggested a key role during Ulva gametogenesis. CONCLUSIONS: Transcriptomic analyses of gametogenesis in the green seaweed Ulva highlight the importance of a conserved RWP-RK transcription factor in the induction of sexual reproduction. The identification of putative master regulators of gametogenesis provides a starting point for further functional characterization.


Subject(s)
Gametogenesis, Plant/genetics , Plant Proteins/metabolism , Seaweed/genetics , Transcription Factors/metabolism , Ulva/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/chemistry , Protein Domains , Reproduction , Transcription Factors/chemistry , Transcription, Genetic
15.
Beilstein J Org Chem ; 17: 1313-1322, 2021.
Article in English | MEDLINE | ID: mdl-34136011

ABSTRACT

Symbiosis is a dominant form of life that has been observed numerous times in marine ecosystems. For example, macroalgae coexist with bacteria that produce factors that promote algal growth and morphogenesis. The green macroalga Ulva mutabilis (Chlorophyta) develops into a callus-like phenotype in the absence of its essential bacterial symbionts Roseovarius sp. MS2 and Maribacter sp. MS6. Spatially resolved studies are required to understand symbiont interactions at the microscale level. Therefore, we used mass spectrometry profiling and imaging techniques with high spatial resolution and sensitivity to gain a new perspective on the mutualistic interactions between bacteria and macroalgae. Using atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionisation high-resolution mass spectrometry (AP-SMALDI-HRMS), low-molecular-weight polar compounds were identified by comparative metabolomics in the chemosphere of Ulva. Choline (2-hydroxy-N,N,N-trimethylethan-1-aminium) was only determined in the alga grown under axenic conditions, whereas ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was found in bacterial presence. Ectoine was used as a metabolic marker for localisation studies of Roseovarius sp. within the tripartite community because it was produced exclusively by these bacteria. By combining confocal laser scanning microscopy (cLSM) and AP-SMALDI-HRMS, we proved that Roseovarius sp. MS2 settled mainly in the rhizoidal zone (holdfast) of U. mutabilis. Our findings provide the fundament to decipher bacterial symbioses with multicellular hosts in aquatic ecosystems in an ecologically relevant context. As a versatile tool for microbiome research, the combined AP-SMALDI and cLSM imaging analysis with a resolution to level of a single bacterial cell can be easily applied to other microbial consortia and their hosts. The novelty of this contribution is the use of an in situ setup designed to avoid all types of external contamination and interferences while resolving spatial distributions of metabolites and identifying specific symbiotic bacteria.

16.
PLoS One ; 16(6): e0250968, 2021.
Article in English | MEDLINE | ID: mdl-34061855

ABSTRACT

Over the past decade, Ulva compressa, a cosmopolitan green algal species, has been identified as a component of green tides in the Yellow Sea, China. In the present study, we sequenced and annotated the complete chloroplast genome of U. compressa (alpha-numeric code: RD9023) and focused on the assessment of genome length, homology, gene order and direction, intron size, selection strength, and substitution rate. We compared the chloroplast genome with the mitogenome. The generated phylogenetic tree was analyzed based on single and aligned genes in the chloroplast genome of Ulva compared to mitogenome genes to detect evolutionary trends. U. compressa and U. mutabilis chloroplast genomes had similar gene queues, with individual genes exhibiting high homology levels. Chloroplast genomes were clustered together in the entire phylogenetic tree and shared several forward/palindromic/tandem repetitions, similar to those in U. prolifera and U. linza. However, U. fasciata and U. ohnoi were more divergent, especially in sharing complementary/palindromic repetitions. In addition, phylogenetic analyses of the aligned genes from their chloroplast genomes and mitogenomes confirmed the evolutionary trends of the extranuclear genomes. From phylogenetic analysis, we identified the petA chloroplast genes as potential genetic markers that are similar to the tufA marker. Complementary/forward/palindromic interval repetitions were more abundant in chloroplast genomes than in mitogenomes. Interestingly, a few tandem repetitions were significant for some Ulva subspecies and relatively more evident in mitochondria than in chloroplasts. Finally, the tandem repetition [GAAATATATAATAATA × 3, abbreviated as TRg)] was identified in the mitogenome of U. compressa and the conspecific strain U. mutabilis but not in other algal species of the Yellow Sea. Owing to the high morphological plasticity of U. compressa, the findings of this study have implications for the rapid non-sequencing detection of this species during the occurrence of green tides in the region.


Subject(s)
Chlorophyta/genetics , Genetic Markers/genetics , China , Genome, Chloroplast/genetics , Phylogeny
17.
J Nat Prod ; 84(4): 1216-1225, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33789052

ABSTRACT

A series of new metallophores, referred to as frankobactins, were extracted from cultures of the symbiotic and nitrogen-fixing actinobacterium Frankia sp. CH37. Structure elucidation revealed a 2-hydroxyphenyl-substituted oxazoline core and a chain composed of five proteinogenic and nonproteinogenic amino acids, suggesting nonribosomal peptide synthesis as the biosynthetic origin. By whole-genome sequencing, bioinformatic analysis, and comparison with other Frankia strains, the genetic locus responsible for the biosynthesis was detected. Spectrophotometric titration of frankobactin with Fe(III) and Cu(II) and mass spectrometry established the 1:1 (metal:frankobactin) coordination. Uptake experiments suggested that frankobactin A1 (1) did not serve to recruit iron, but to detoxify Cu(II). As frankobactin A1 prevents the cellular entry of Cu(II), it could play a crucial role in the symbiosis of Frankia sp. and its host in the reclamation of copper-contaminated soil.


Subject(s)
Copper/metabolism , Ferric Compounds/metabolism , Frankia/metabolism , Nitrogen Fixation , Molecular Structure , Symbiosis
18.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33303668

ABSTRACT

We report the genome sequence of Frankia sp. strain CH37, a filamentous nitrogen-fixing soil-dwelling Gram-positive bacterium and hyperproducer of metal-complexing organic ligands (metallophores) isolated from the sea buckthorn (Hippophae rhamnoides). The 9.7-Mbp sequence, obtained using PacBio technology, harbors 7,766 predicted coding sequences, including gene clusters for metallophore production.

19.
Biometals ; 33(6): 415-433, 2020 12.
Article in English | MEDLINE | ID: mdl-33026607

ABSTRACT

Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.


Subject(s)
Iron/isolation & purification , Pseudomonas/chemistry , Siderophores/isolation & purification , Iron/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Siderophores/chemistry , Tandem Mass Spectrometry
20.
ISME J ; 14(11): 2675-2690, 2020 11.
Article in English | MEDLINE | ID: mdl-32690937

ABSTRACT

Coexistence of microaerophilic Fe(II)-oxidizers and anaerobic Fe(III)-reducers in environments with fluctuating redox conditions is a prime example of mutualism, in which both partners benefit from the sustained Fe-pool. Consequently, the Fe-cycling machineries (i.e., metal-reducing or -oxidizing pathways) should be most affected during co-cultivation. However, contrasting growth requirements impeded systematic elucidation of their interactions. To disentangle underlying interaction mechanisms, we established a suboxic co-culture system of Sideroxydans sp. CL21 and Shewanella oneidensis. We showed that addition of the partner's cell-free supernatant enhanced both growth and Fe(II)-oxidizing or Fe(III)-reducing activity of each partner. Metabolites of the exometabolome of Sideroxydans sp. CL21 are generally upregulated if stimulated with the partner´s spent medium, while S. oneidensis exhibits a mixed metabolic response in accordance with a balanced response to the partner. Surprisingly, RNA-seq analysis revealed genes involved in Fe-cycling were not differentially expressed during co-cultivation. Instead, the most differentially upregulated genes included those encoding for biopolymer production, lipoprotein transport, putrescine biosynthesis, and amino acid degradation suggesting a regulated inter-species biofilm formation. Furthermore, the upregulation of hydrogenases in Sideroxydans sp. CL21 points to competition for H2 as electron donor. Our findings reveal that a complex metabolic and transcriptomic response, but not accelerated formation of Fe-end products, drive interactions of Fe-cycling microorganisms.


Subject(s)
Gallionellaceae , Shewanella , Ferrous Compounds , Iron , Oxidation-Reduction , Shewanella/genetics
SELECTION OF CITATIONS
SEARCH DETAIL