Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 356: 141926, 2024 May.
Article in English | MEDLINE | ID: mdl-38588895

ABSTRACT

Insecticides, including the widely used neonicotinoids, can affect both pest and non-target species. In addition to lethal effects, these insecticides at sub-lethal levels may cause disruption to sensory perception and processing leading to behavioural impairments. In this laboratory experiment, we investigated the effects of a 10-day exposure to the neonicotinoid insecticide, imidacloprid, on the behaviour of larvae of the damselfly, Lestes congener. In tests of baseline activity, imidacloprid concentrations of 1.0 and 10.0 µg/L caused significant reductions in foraging behaviour. Moreover, in response to chemical cues that indicate a potential risk to the larvae, imidacloprid caused the loss of an appropriate antipredator response (reduced foraging) depending on the concentration and duration of exposure. Imidacloprid at 0.1 µg/L caused the loss of responses toward the odour of a beetle (Dytiscus spp.) predator after 10 days of exposure, whereas 1.0 µg/L caused lost responses toward both the predator odour and injured conspecific cues (i.e., alarm cues) and after only 2 days of exposure. However, at 10.0 µg/L, larvae responded appropriately to both cues throughout the duration of the study, suggesting compensatory responses to imidacloprid at higher concentrations. Hence, the lack of appropriate responses at 1.0 µg/L likely resulted from a cognitive impairment rather than chemical alteration of these important chemosensory cues. In the natural environment, such effects will likely cause decreased survivorship in predator encounters. Hence, imidacloprid exposure, even at low concentrations, could have adverse consequences for chemosensory ecology of this damselfly species.


Subject(s)
Cues , Insecticides , Larva , Neonicotinoids , Nitro Compounds , Odonata , Predatory Behavior , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Insecticides/toxicity , Larva/drug effects , Larva/physiology , Predatory Behavior/drug effects , Odonata/physiology , Odonata/drug effects , Coleoptera/drug effects , Coleoptera/physiology , Odorants , Imidazoles/toxicity , Behavior, Animal/drug effects
2.
Environ Pollut ; 342: 123085, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38072015

ABSTRACT

Many aquatic organisms use chemosensory information to learn about local predation threats, but contaminants in their environment may impair such cognitive processes. Neonicotinoids are a class of water-soluble systemic insecticides that have become a major concern in aquatic systems. In this study, we explored how a 10-day exposure to various concentrations (0, 0.1, 1.0, or 10.0 µg/L) of the neonicotinoid imidacloprid affects the learned recognition of predator odour by non-target damselfly larvae (Lestes spp). Unexposed larvae and those exposed to the low concentration (0.1 µg/L) demonstrated an appropriate learned response to a novel predator odour following a conditioning with the odour paired with chemical alarm cues. However, such learning failed to occur for larvae that were exposed to imidacloprid concentrations of 1.0 and 10.0 µg/L. Thus, either the cognitive processing of the chemical information was impaired or the chemistry of one or both of the conditioning cues was altered, making them ineffective for learning. In a second experiment, we found evidence for this latter hypothesis. In the absence of background imidacloprid exposure, larvae did not show significant learned responses to the predator odour when the conditioning cues were mixed with imidacloprid (initial pulse solution of 3.0 µg/L) at the start of conditioning (reaching a final concentration of 0.01 µg/L). These findings indicate that even low levels of imidacloprid can have important implications for chemosensory cognition of non-target species in aquatic environments.


Subject(s)
Insecticides , Odonata , Water Pollutants, Chemical , Animals , Insecticides/toxicity , Larva , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...