Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 8: txae064, 2024.
Article in English | MEDLINE | ID: mdl-38770036

ABSTRACT

In March 2020, the World Health Organization declared COVID-19 a pandemic, which ultimately led to many meat processors temporarily shutting down or reducing processing capacity. This backlog in processing capacity forced many feedlots to retain cattle for longer periods of time and assume the risk of major market fluctuations. The aim of this study was to understand how a dietary insult affects meat quality and muscle metabolism in market-ready steers (590 kg). Sixteen market-ready (590 kg) commercial Angus crossbred steers were subjected to a maintenance diet of either forage or grain for 60 d. Longissimus lumborum (LL) muscle samples were collected immediately postmortem and processed for characteristics reflecting the underlying muscle fiber type and energy state of the tissue. Despite cattle being subjected to a 60-d feeding period, there were no detectable differences (P > 0.05) in carcass characteristics, color of lean, or ultimate pH (pHu). Moreover, our data show that muscle plasticity is rather resilient, as reflected by lack of significance (P > 0.05) in oxidative and glycolytic enzymes, myosin heavy chain isoforms (MyHC), myoglobin, and mitochondrial DNA (mtDNA) contents. These data show that market-ready steers are capable of withstanding a low-input feeding strategy up to 60 d without dramatically impacting underlying muscle characteristics and meat quality development.

2.
Animals (Basel) ; 13(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627389

ABSTRACT

Variations in postmortem metabolism in muscle impact pork quality development. Curiously, some genetic lines are more refractile to adverse pork quality development than others and may regulate energy metabolism differently. The aim of this study was to challenge pork carcasses from different genetic populations with electrical stimulation (ES) to determine how postmortem metabolism varies with genetic line and explore control points that reside in glycolysis in dying muscle. Three genetic populations (GP) were subjected to ES (100 V or 200 V, 13 pulses, 2 s on/2 s off) at 15- or 25-min post-exsanguination, or no stimulation (NS). Genetic population affected relative muscle relative abundance of different myosin heavy chains, glycogen, G6P, and lactate concentrations. Genetic lines responded similarly to ES, but a comparison of ES treatment groups revealed a trend for an interaction between voltage, time of ES, and time postmortem. Higher voltage accelerated pH decline at 20 min up to 60 min postmortem. Trends in color and firmness scores and L* values were consistent with pH and metabolite data. These data show that genetic populations respond differently to postmortem perturbation by altering glycolytic flux and suggest differences in postmortem glycolysis may be partially responsible for differences in meat quality between genetic populations, though not entirely.

3.
Poult Sci ; 97(5): 1808-1817, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29635634

ABSTRACT

During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate pH of broiler P. major muscle, while low PFK activity and mitochondria content limit the flux through glycolysis.


Subject(s)
Chickens/metabolism , Glycolysis , Meat/analysis , Mitochondria/metabolism , Pectoralis Muscles/metabolism , Phosphofructokinases/metabolism , Animals , Avian Proteins/metabolism , Hydrogen-Ion Concentration
4.
Meat Sci ; 139: 97-106, 2018 May.
Article in English | MEDLINE | ID: mdl-29413683

ABSTRACT

Anaerobic glycolysis dominates energy metabolism postmortem. Even so, however, recent studies suggest mitochondria can modify postmortem energy metabolism and may contribute to pH decline, possibly affecting the transformation of muscle to meat and fresh meat quality development. Because oxygen is a necessary component of mitochondrial function, oxygenation of porcine and bovine longissimus thoracis et lumborum was determined postmortem using NIR spectroscopy. The ratio of oxy- to deoxymyoglobin decreased with time postmortem in both species. Metabolic analyses of muscle samples collected over the same timeframe also revealed fluctuations in TCA intermediates. Finally, mitochondria collected from muscle of electrically stimulated carcasses differed from those of non-stimulated muscle. Collectively, these data support the thesis that muscle mitochondria function early postmortem and may play a more active part in pH decline and possibly meat quality development.


Subject(s)
Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxygen/chemistry , Red Meat/analysis , Animals , Cattle , Electric Stimulation , Hydrogen-Ion Concentration , Myoglobin/metabolism , Postmortem Changes , Swine
5.
Meat Sci ; 133: 119-125, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28668577

ABSTRACT

The purpose of this study was to determine the role of mitochondria in postmortem muscle metabolism. Isolated mitochondria were incorporated into a reaction buffer that mimics postmortem glycolysis with or without mitochondrial electron transport chain inhibitors. Addition of mitochondria lowered pH values at 240 and 1440min regardless of inhibitors. Reduction in pH was accompanied by enhanced glycogen degradation and lactate accumulation. To explore the mechanism responsible for this exaggerated metabolism, mitochondrial preparations were mechanically disrupted and centrifuged. Resulting supernatants and pellets each were added to the in vitro model. Mitochondrial supernatants produced similar effects as those including intact mitochondria. To narrow further our target of investigation, mitochondrial supernatants were deproteinized with perchloric acid. The effect of mitochondrial supernatant was lost after perchloric acid treatment. These data indicate that a mitochondrial-based protein is capable of increasing glycolytic flux in an in vitro model and may partially explain acid meat development in highly oxidative AMPKγ3R200Q mutated pigs.


Subject(s)
Glycogen/metabolism , Glycolysis , Red Meat/analysis , Animals , Female , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Male , Mitochondria/metabolism , Mitochondrial Proteins , Muscle, Skeletal/metabolism , Perchlorates/pharmacology , Postmortem Changes , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...