Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37999361

ABSTRACT

La0.6Ca0.4Co1-xFexO3-d in its various compositions has proven to be an excellent CO2-resistant oxygen transport membrane that can be used in plasma-assisted CO2 conversion. With the goal of incorporating green hydrogen into the CO2 conversion process, this work takes a step further by investigating the compatibility of La0.6Ca0.4Co1-xFexO3-d membranes with hydrogen fed into the plasma. This will enable plasma-assisted conversion of the carbon monoxide produced in the CO2 reduction process into green fuels, like methanol. This requires the La0.6Ca0.4Co1-xFexO3-d membranes to be tolerant towards reducing conditions of hydrogen. The hydrogen tolerance of La0.6Ca0.4Co1-xFexO3-d (x = 0.8) was studied in detail. A faster and resource-efficient route based on ultrasonic spray synthesis was developed to synthesise the La0.6Ca0.4Co0.2Fe0.8O3-d membranes. The La0.6Ca0.4Co0.2Fe0.8O3-d membrane developed using ultrasonic spray synthesis showed similar performance in terms of its oxygen permeation when compared with the ones synthesised with conventional techniques, such as co-precipitation, sol-gel, etc., despite using 30% less cobalt.

2.
Membranes (Basel) ; 10(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806656

ABSTRACT

Dense, H2- and CO2-resistant, oxygen-permeable 40 wt % Ce0.9Pr0.1O2-δ-60 wt % NdxSr1-xFe0.9Cu0.1O3-δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce0.9Pr0.1O2-δ-Nd0.5Sr0.5Fe0.9Cu0.1O3-δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO2 atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce0.9Pr0.1O2-δ-Nd0.5Sr0.5Fe0.9Cu0.1O3-δ membrane reached up to 1.02 mL min-1 cm-2 and 0.63 mL min-1 cm-2 under an air/He and air/CO2 gradient at T = 1223 K, respectively. In addition, a Ce0.9Pr0.1O2-δ-Nd0.5Sr0.5Fe0.9Cu0.1O3-δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction-separation processes.

3.
Materials (Basel) ; 13(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599920

ABSTRACT

Bacterial cellulose is an organic product of certain bacterias' metabolism. It differs from plant cellulose by exhibiting a high strength and purity, making it especially interesting for flexible electronics, membranes for water purification, tissue engineering for humans or even as artificial skin and ligaments for robotic devices. However, bacterial cellulose's naturally slow growth rate has limited its large-scale applicability to date. Titanium (IV) bis-(ammonium lactato) dihydroxide is shown to be a powerful tool to boost the growth rate of bacterial cellulose production by more than one order of magnitude and that it simultaneously serves as a precursor for the Ti4+-coordinated cross-linking of the fibers during membrane formation. The latter results in an almost two-fold increase in Young's modulus (~18.59 GPa), a more than three-fold increase in tensile strength (~436.70 MPa) and even a four-fold increase in toughness (~6.81 MJ m-³), as compared to the pure bacterial cellulose membranes.

4.
Nanomaterials (Basel) ; 10(4)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316343

ABSTRACT

The determination of reversible phase transitions in the perovskite-type thermoelectric oxide Eu0.8Ca0.2TiO3-δ is fundamental, since structural changes largely affect the thermal and electrical transport properties. The phase transitions were characterized by heat capacity measurements, Rietveld refinements, and pair distribution function (PDF) analysis of the diffraction data to achieve information on the phase transition temperatures and order as well as structural changes on the local level and the long range. On the long-range scale, Eu0.8Ca0.2TiO3-δ showed a phase transition sequence during heating from cubic at 100 < T < 592 K to tetragonal and finally back to cubic at T > 846 K. The phase transition at T = 592 K (diffraction)/606 K (thermal analysis) was reversible with a very small thermal hysteresis of about 2 K. The local structure at 100 K was composed of a complex nanodomain arrangement of Amm2- and Pbnm-like local structures with different coherence lengths. Since in Eu0.8Ca0.2TiO3-δ the amount of Pbnm domains was too small to percolate, the competition of ferroelectrically distorted octahedra (Amm2 as in BaTiO3) and rigid, tilted octahedra (Pbnm as in CaTiO3) resulted in a cubic long-range structure at low temperatures.

5.
Philos Trans A Math Phys Eng Sci ; 377(2150): 20190130, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31177957

ABSTRACT

The distinct electronic properties, including p-type semiconducting and a wide optical band gap, renders SnO suitable for applications such as microelectronic devices, gas sensors and electrodes. However, the synthesis of SnO is rather challenging due to the instability of the oxide, which is usually obtained as a by-product of SnO2 fabrication. In this work, we developed a bioinspired synthesis, based on a hydrothermal approach, for the direct production of SnO nanoparticles. The amount of mineralizer, inducing the precipitation, was identified, which supports a template-free formation of the nanosized SnO particles at low temperature and mild chemical conditions. Moreover, the SnO nanoparticles exhibit a shape of unique three-dimensional crosses similar to the calcite crosses present in the calcareous sponges. We demonstrated that SnO crosses are evenly distributed and embedded in an organic scaffold by an ice-templating approach, in this way closely mimicking the structure of calcareous sponges. Such scaffolds, reinforced by an active material, here SnO, could be used as filters, sensors or electrodes, where a high surface area and good accessibility are essential. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.

6.
Nano Lett ; 18(4): 2519-2524, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29558622

ABSTRACT

The demand to outperform current technologies pushes scientists to develop novel strategies, which enable the fabrication of materials with exceptional properties. Along this line, lightweight structural materials are of great interest due to their versatile applicability as sensors, catalysts, battery electrodes, and acoustic or mechanical dampers. Here, we report a strategy to design ultralight (ρ = 3 mg/cm3) and hierarchically structured ceramic scaffolds of macroscopic size. Such scaffolds exhibit mechanical reversibility comparable to that of microscopic metamaterials, leading to a macroscopically remarkable dynamic mechanical performance. Upon mechanical loading, these scaffolds show a deformation mechanism similar to polyurethane foams, and this resilience yields ultrahigh damping capacities, tan δ, of up to 0.47.

7.
Phys Chem Chem Phys ; 19(28): 18273-18278, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28696469

ABSTRACT

Doping (or substitution)-induced modification of the electronic structure to increase the electronic density of states (eDOS) near the Fermi level is considered as an effective strategy to enhance the Seebeck coefficient, and may consequently boost the thermoelectric performance. Through density-functional theory calculations of Mn-substituted TiFe2-xMnxSn compounds, we demonstrate that the d-states of the substituted Mn atoms induce a strong resonant level near the Fermi energy. Our experimental results are in good agreement with the calculations. They show that Mn substitution results in a large increase of the Seebeck coefficient, arising from an enhanced eDOS in Heusler compounds. The results prove that a proper substitution position and element selection can increase the eDOS, leading to a higher Seebeck coefficient and thermoelectric performance of ecofriendly materials.

8.
Phys Chem Chem Phys ; 19(21): 13469-13480, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28332675

ABSTRACT

A series of Ba1-xEuxTiO3-δ (0.1 ≤ x ≤ 0.9) phases with ∼40 nm particle size were synthesized via a Pechini method followed by annealing and sintering under a reducing atmosphere. The effects of Eu2+ substitution on the BaTiO3 crystal structure and the thermoelectric transport properties were systematically investigated. According to synchrotron X-ray diffraction data only cubic perovskite structures were observed. On the local scale below about 20 Å (equal to ∼5 unit cells) deviations from the cubic structure model (Pm3[combining macron]m) were detected by evaluation of the pair distribution function (PDF). These deviations cannot be explained by a simple symmetry breaking model like in EuTiO3-δ. The best fit was achieved in the space group Amm2 allowing for a movement of Ti and Ba/Eu along 〈110〉 of the parent unit cell as observed for BaTiO3. Density functional calculations delivered an insight into the electronic structure of Ba1-xEuxTiO3-δ. From the obtained density of states a significant reduction of the band gap by the presence of filled Eu2+ 4f states at the top of the valence band was observed. The physical property measurements revealed that barium-europium titanates exhibit n-type semiconducting behavior and at high temperature the electrical conductivity strongly depended on the Eu2+ content. Activation energies calculated from the electrical conductivity and Seebeck coefficient data indicate that at high temperatures (800 K < T < 1123 K) the conduction mechanism of Ba1-xEuxTiO3-δ (0.1 ≤ x ≤ 0.9) is a polaron hopping when 0 < x ≤ 0.6 and is a thermally activated process when 0.6 < x < 1. Besides, the thermal conductivity increases with increasing Eu2+ concentration. Due to a remarkable improvement of the power factor, Ba0.1Eu0.9TiO3-δ showed a ZT value of 0.24 at 1123 K.

9.
Chemistry ; 21(8): 3290-303, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25581022

ABSTRACT

Our attempts to synthesize the hitherto unknown binary copper(I) fluoride have led to first successes and a serendipitious result: By conproportionation of elemental copper and copper(II) fluoride in anhydrous liquid ammonia, two copper(I) fluorides were obtained as simple NH3 complexes. One of them presents an example of ligand-unsupported "cuprophilic" interactions in an infinite [Cu2 (NH3 )4 ](2+) chain with alternating Cu-Cu distances. We discovered that both copper(I) fluorides can easily be converted into Cu3 N at room temperature, just by applying a vacuum. Additionally, we investigated the formation mechanism of the classical synthesis route of Cu3 N that starts with CuF2 and flowing NH3 in the temperature range between ambient and 290 °C by means of thermal analysis and in situ neutron diffraction. The reaction proceeds at elevated temperatures through the formation of a blue and amorphous ammoniate Cu(NH3 )2 F2 , the reformation of CuF2 , and finally the redox reaction to form Cu3 N.

SELECTION OF CITATIONS
SEARCH DETAIL
...