Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet World ; 17(2): 319-328, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595659

ABSTRACT

Background and Aim: Irradiated chitosan can be used as a matrix for slow-release urea (SRU) production. This study aimed to (1) determine the optimal formulation of irradiated chitosan matrix for controlling nitrogen release and (2) evaluate the characteristics of SRU in vitro fermentation based on irradiated chitosan as a feed supplement. Materials and Methods: In the first phase of the investigation, four chitosan-based SRU formulations with varying amounts of acrylamide (3 and 5 g) and gamma irradiation (5 and 10 kGy) were evaluated. Scanning electron microscopy, Fourier transform mid-infrared spectroscopy, and ammonia release characteristics were used to observe morphological, functional group, and ammonia release characteristics. In the second phase of research, the most effective SRU formulation was utilized as a supplement to ruminant rations based on rice straw, sorghum straw, and alfalfa. Gas production, rumen fermentation characteristics, and methane gas production were observed in vitro. Results: On the basis of surface image analysis, the four SRU formulas generate a similar appearance. Compared with untreated urea, the SRU3 formula reduced the percentage of ammonia emission by 12.85%-27.64% after 24 h of incubation (p = 0.05), as determined by the first phase study. SRU3 became the basis for the second testing phase. The addition of SRU3 did not affect the optimal gas production in vitro. SRU3 treatment produced less gas than Optigen® treatment (p = 0.05). With regard to rumen fermentation and digestibility, Optigen® yielded better results than SRU3 (p = 0.05). However, the treatment with SRU3 resulted in reduced methane production compared to that in the control (p = 0.05). Conclusion: Irradiated chitosan as an SRU matrix may control the release of ammonia in the rumen medium. The SRU3 formulation is the most effective. The addition of SRU to rice straw-based rations reduces methane production without affecting in vitro digestibility.

2.
Poult Sci ; 103(5): 103556, 2024 May.
Article in English | MEDLINE | ID: mdl-38430777

ABSTRACT

Citrus represents a valuable repository of antioxidant substances that possess the potential for the preservation of meat quality. This meta-analysis aimed to comprehensively assess the impact of citrus additives on the quality and safety of chicken meat. Adhering to the PRISMA protocol, we initially identified 103 relevant studies, from which 20 articles meeting specific criteria were selected for database construction. Through the amalgamation of diverse individual studies, this research provides a comprehensive overview of chicken meat quality and safety, with a specific focus on the influence of citrus-derived additives. Minimal alterations were observed in the nutritional quality of chicken meat concerning storage temperature and duration. The findings demonstrated a significant reduction in aerobic bacterial levels, with Citrus aurantiifolia exhibiting the highest efficacy (P < 0.01). Both extracted and nonextracted citrus components, applied through coating, curing, and marinating, effectively mitigated bacterial contamination. Notably, thiobarbituric acid reactive substances (TBARS) concentrations were significantly reduced, particularly with Citrus hystrix (P < 0.01). Total volatile base nitrogen (TVBN), an indicator of protein degradation, exhibited a decrease, with citrus extract displaying enhanced efficacy (P < 0.01). Chemical composition changes were marginal, except for a protein increase after storage (P < 0.01). Hedonic testing revealed varied preferences, indicating improvements in flavor, juiciness, and overall acceptability after storage (P < 0.01). The study underscores the effectiveness of citrus additives in preserving chicken meat quality, highlighting their antibacterial and antioxidant properties, despite some observed alterations in texture and chemical composition. Citrus additives have been proven successful in 1) mitigating adverse effects on chicken meat during storage, especially with Citrus hystrix exhibiting potent antimicrobial properties, and 2) enhancing the hedonic quality of chicken meat. This research strongly advocates for the application of citrus additives to uphold the quality and safety of chicken meat.


Subject(s)
Chickens , Citrus , Meat , Animals , Citrus/chemistry , Meat/analysis , Food Microbiology , Food Preservation/methods , Food Safety , Food Quality
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123061, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37390717

ABSTRACT

Optical characteristics of Mandarin Orange cv. Batu 55 of different maturity level has been obtained using reflectance (Vis-NIR) and fluorescence spectroscopy. Spectra features of both reflectance and fluorescence spectroscopy have been evaluated to develop a ripeness prediction model. Spectra dataset and reference measurements were subject to the partial least square regression (PLSR) analysis. The best prediction models were using reflectance spectroscopy data showing the coefficient of determination R2 up to 0.89 and root mean square error (RMSE) of 2.71. On the other hand, it was found that fluorescence spectroscopy showed interesting spectra change in correlation with the accumulation of bluish and reddish fluorescence compounds in the lenticel spots on the fruit surface. The best prediction model using fluorescence spectroscopy data showed the R2 of 0.88 and RMSE of 2.81. Besides that, it wa found that combining spectra of reflectance and fluorescence features could increase the R2 of the partial least square regression (PLSR) model with Savitzky-Golay smoothing, up to 0.91 for brix-acid ratio prediction with RMSE 2.46. These results show the potential of the combined reflectance-fluorescence spectroscopy system for Mandarin ripeness assessment.


Subject(s)
Citrus , Spectroscopy, Near-Infrared/methods , Spectrometry, Fluorescence , Least-Squares Analysis , Fruit
4.
Foods ; 12(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38231760

ABSTRACT

Aceh is an important region for the production of high-quality Gayo arabica coffee in Indonesia. In this area, several coffee cherry processing methods are well implemented including the honey process (HP), wine process (WP), and natural process (NP). The most significant difference between the three coffee cherry processing methods is the fermentation process: HP is a process of pulped coffee bean fermentation, WP is coffee cherry fermentation, and NP is no fermentation. It is well known that the WP green coffee beans are better in quality and are sold at higher prices compared with the HP and NP green coffee beans. In this present study, we evaluated the utilization of fluorescence information to discriminate Gayo arabica green coffee beans from different cherry processing methods using portable fluorescence spectroscopy and chemometrics analysis. A total of 300 samples were used (n = 100 for HP, WP, and NP, respectively). Each sample consisted of three selected non-defective green coffee beans. Fluorescence spectral data from 348.5 nm to 866.5 nm were obtained by exciting the intact green coffee beans using a portable spectrometer equipped with four 365 nm LED lamps. The result showed that the fermented green coffee beans (HP and WP) were closely mapped and mostly clustered on the left side of PC1, with negative scores. The non-fermented (NP) green coffee beans were clustered mostly on the right of PC1 with positive scores. The results of the classification using partial least squares-discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and principal component analysis-linear discriminant analysis (PCA-LDA) are acceptable, with an accuracy of more than 80% reported. The highest accuracy of prediction of 96.67% was obtained by using the PCA-LDA model. Our recent results show the potential application of portable fluorescence spectroscopy using LED lamps to classify and authenticate the Gayo arabica green coffee beans according to their different cherry processing methods. This innovative method is more affordable and could be easy to implement (in terms of both affordability and practicability) in the coffee industry in Indonesia.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 155-160, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30981029

ABSTRACT

Recently, demand for authentication technology is growing rapidly in an attempt to overcome counterfeiting of high-value agricultural products, such as patchouli oil. Fingerprinting methods based on spectroscopy are one such technology being used for authentication. However, the spectral datasets obtained are multivariate in nature; containing thousands of data points for a single sample, making data acquisition and processing time-consuming. Therefore, reduction and simplification in the number of variables used required is needed to provide a more rapid and applicable method. Color cameras, which can capture image in the visible region light, could be such an alternative spectral data acquisition approach. In this research, a simplified spectroscopy method was developed for origin authentication of patchouli oil. The system consists of front ultraviolet light induced (365 nm) fluorescence and a white LED-based backlighting imaging system that consecutively captures the fluorescence and transmittance characteristics of the oil in the visible region. From the captured images, features were extracted and analyzed using Principle Component Analysis (PCA) to identify important image features for discrimination of origin. From the samples measured, the samples clustered around three islands of origin in the PCA space. A classification model based on fluorescence and transmittance image features (color values) could discriminate origin classes with a total accuracy of 88.46%. A lower accuracy was found for the Java class due to low sample numbers. This result demonstrates that the proposed system has the potential to be a rapid authentication tool for determining the geographical origin of patchouli oils.


Subject(s)
Oils, Volatile/analysis , Optical Imaging/methods , Plant Oils/analysis , Pogostemon/chemistry , Equipment Design , Geography , Oils, Volatile/classification , Optical Imaging/instrumentation , Plant Oils/classification , Pogostemon/classification , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...