Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 614: 100-106, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35576680

ABSTRACT

T-cell responses are fine-tuned by positive and negative co-signal molecules expressed on immune cells and adjacent tissues. VSIG4 is a newly identified member of the B7 family of ligands, which negatively regulates innate inflammatory and CD4+ T cell-mediated responses. However, little is known about the direct effects of VSIG4, which are exerted through an unidentified counter-receptor on CD8+ T cells. We investigated the binding of the VSIG4-Ig fusion protein during CD8+ T cell activation, and the functional involvement of VSIG4 pathway, using VSIG4-Ig and VSIG4-transfectants. VSIG4-Ig binding to CD8+ T cells was temporally observed in the CD44high phenotype during initial activation. VSIG4-Ig binding was observed earlier than the induction of PD-1, LAG3, and TIM-3, which are immune checkpoint receptors for exhausted CD8+ T cells. Immobilized VSIG4-Ig inhibited anti-CD3/CD28 mAb-induced CD8+ T cell activation, as indicated by proliferation and IFN-γ production, similar to the downregulation of T-bet and Eomesodermin transcription factors. VSIG4 on FcγR+ P815 or specific antigen-presenting E.G7 cells inhibited the generation of effector CD8+ T cells, as indicated by proliferation, IFN-γ and TNF-α expression, and granule degradation, compared to parental cells. However, the window for the regulatory function of VSIG4 was narrow and dependent on the strength of TCR (and CD28)-mediated signals. Our results suggested that VSIG4 directly delivers co-inhibitory signals via an as-yet unidentified counter-receptor on activated CD8+ T cells. VSIG4-mediated CD8+ T cell tolerance might contribute to the steady-state maintenance of homeostasis.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Animals , CD28 Antigens/genetics , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL