Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559893

ABSTRACT

This comprehensive review focuses on polyetheretherketone (PEEK), a synthetic thermoplastic polymer, for applications in dentistry. As a high-performance polymer, PEEK is intrinsically robust yet biocompatible, making it an ideal substitute for titanium-the current gold standard in dentistry. PEEK, however, is also inert due to its low surface energy and brings challenges when employed in dentistry. Inert PEEK often falls short of achieving a few critical requirements of clinical dental materials, such as adhesiveness, osseoconductivity, antibacterial properties, and resistance to tribocorrosion. This study aims to review these properties and explore the various surface modification strategies that enhance the performance of PEEK. Literatures searches were conducted on Google Scholar, Research Gate, and PubMed databases using PEEK, polyetheretherketone, osseointegration of PEEK, PEEK in dentistry, tribology of PEEK, surface modifications, dental applications, bonding strength, surface topography, adhesive in dentistry, and dental implant as keywords. Literature on the topics of surface modification to increase adhesiveness, tribology, and osseointegration of PEEK were included in the review. The unavailability of full texts was considered when excluding literature. Surface modifications via chemical strategies (such as sulfonation, plasma treatment, UV treatment, surface coating, surface polymerization, etc.) and/or physical approaches (such as sandblasting, laser treatment, accelerated neutral atom beam, layer-by-layer assembly, particle leaching, etc.) discussed in the literature are summarized and compared. Further, approaches such as the incorporation of bioactive materials, e.g., osteogenic agents, antibacterial agents, etc., to enhance the abovementioned desired properties are explored. This review presents surface modification as a critical and essential approach to enhance the biological performance of PEEK in dentistry by retaining its mechanical robustness.

2.
Molecules ; 24(18)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527527

ABSTRACT

This study presents a comparison of two types of bifunctional structured surface that were made from the same polymer -- an antimicrobial polycation (a synthetic mimic of an antimicrobial peptide, SMAMP) and a protein-repellent polyzwitterion (poly(sulfobetaines), PSB). The first type of bifunctional surface was fabricated by a colloidal lithography (CL) based process where the two polymers were immobilized sequentially onto pre-structured surfaces with a chemical contrast (gold on silicon). This enabled site-selective covalent attachment. The CL materials had a spacing ranging from 200 nm to 2 µm. The second type of structured surface (spacing: 1 - 8.5 µm) was fabricated using a microcontact printing (µCP) process where SMAMP patches were printed onto a PSB network, so that 3D surface features were obtained. The thus obtained materials were studied by quantitative nanomechanical measurements using atomic force microscopy (QNM-AFM). The different architectures led to different local elastic moduli at the polymer-air interface, where the CL surfaces were much stiffer (Derjaguin-Muller-Toporov (DMT) modulus = 20 ± 0.8 GPa) compared to the structured 3D networks obtained by µCP (DMT modulus = 42 ± 1.1 MPa). The effects of the surface topology and stiffness on the antimicrobial activity against Escherichia coli, the protein repellency (using fibrinogen), and the compatibility with human gingival mucosal keratinocytes were investigated. The softer 3D µCP surfaces had simultaneous antimicrobial activity, protein repellency, and cell compatibility at all spacings. For the stiffer CL surfaces, quantitative simultaneous antimicrobial activity and protein repellency was not obtained. However, the cell compatibility could be maintained at all spacings. The optimum spacing for the CL materials was in the range of 500 nm-1 µm, with significantly reduced antimicrobial activity at 2 µm spacing. Thus, the soft polymer network obtained by µCP could be more easily optimized than the stiff CL surface, and had a broader topology range of optimal or near-optimal bioactivity.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biopolymers/chemistry , Biopolymers/pharmacology , Elastic Modulus , Colloids/chemistry , Humans , Microscopy, Atomic Force , Molecular Structure , Structure-Activity Relationship , Surface Properties
3.
Langmuir ; 35(5): 1211-1226, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30563333

ABSTRACT

Biofilm-associated infections of medical devices are a global problem. For the prevention of such infections, biomaterial surfaces are chemically or topographically modified to slow down the initial stages of biofilm formation. In the bifunctional material here presented, chemical and topographical cues are combined, so that protein and bacterial adhesion as well as bacterial proliferation are effectively inhibited. Upon changes in the surface topography parameters and investigation of the effect of these changes on bioactivity, structure-property relationships are obtained. The target material is obtained by microcontact printing (µCP), a soft lithography method. The antimicrobial component, poly(oxanorbornene)-based synthetic mimics of an antimicrobial peptide (SMAMP), was printed onto a protein-repellent polysulfobetaine hydrogel, so that bifunctional 3D structured polymer surfaces with 1, 2, and 8.5 µm spacing are obtained. These surfaces are characterized with fluorescence microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, and contact angle measurements. Biological studies show that the bifunctional surfaces with 1 and 2 µm spacing are 100% antimicrobially active against Escherichia coli and Staphylococcus aureus, 100% fibrinogen-repellent, and nontoxic to human gingival mucosal keratinocytes. At 8.5 µm spacing, the broad-band antimicrobial activity and the protein repellency are compromised, which indicates that this spacing is above the upper limit for effective simultaneous antimicrobial activity and protein repellency of polyzwitterionic-polycationic materials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Hydrogels/pharmacology , Polymers/pharmacology , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Bacterial Adhesion/drug effects , Cell Line , Escherichia coli/drug effects , Escherichia coli/physiology , Fibrinogen/chemistry , Humans , Hydrogels/chemistry , Hydrogels/toxicity , Polymers/chemistry , Polymers/toxicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
4.
Materials (Basel) ; 11(8)2018 08 11.
Article in English | MEDLINE | ID: mdl-30103513

ABSTRACT

By copolymerizing an amphiphilic oxanorbornene monomer bearing N- tert-butyloxycarbonyl (Boc) protected cationic groups with an oxanorbornene-functionalized poly(ethylene glycol) (PEG) macromonomer, bifunctional comb copolymers were obtained. Varying the comonomer ratios led to copolymers with PEG contents between 5⁻25 mol %. These polymers were simultaneously surface-immobilized on benzophenone-bearing substrates and cross-linked with pentaerythritoltetrakis(3-mercaptopropionate). They were then immersed into HCl to remove the Boc groups. The thus obtained surface-attached polymer hydrogels (called SMAMP*-co-PEG) were simultaneously antimicrobial and protein-repellent. Physical characterization data showed that the substrates used were homogeneously covered with the SMAMP*-co-PEG polymer, and that the PEG moieties tended to segregate to the polymer⁻air interface. Thus, with increasing PEG content, the interface became increasingly hydrophilic and protein-repellent, as demonstrated by a protein adhesion assay. With 25 mol % PEG, near-quantitative protein-adhesion was observed. The antimicrobial activity of the SMAMP*-co-PEG polymers originates from the electrostatic interaction of the cationic groups with the negatively charged cell envelope of the bacteria. However, the SMAMP*-co-PEG surfaces were only fully active against E. coli, while their activity against S. aureus was already compromised by as little as 5 mol % (18.8 mass %) PEG. The long PEG chains seem to prevent the close interaction of bacteria with the surface, and also might reduce the surface charge density.

5.
Macromolecules ; 54(4): 1409-1417, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-34404958

ABSTRACT

The lateral dimensions of micro- and nanostructures obtained by microcontact printing (µCP) can be easily varied by selecting stamps with the desired spacing and pattern. However, the height of these structures cannot be tuned as easily, and in most cases only 2D structures are obtained. Here, we show how the chemical cross-linking properties of polymer inks designed for µCP can be used to obtain 3D structures with heights ranging from 3 to 750 nm using the same µCP stamps. This is technologically relevant because the ink concentration affects the quality and resolution of the printed image, and therefore can only be varied in a certain range. By exploiting the cross-linking efficiency to tune the height, an additional parameter is available to reach the desired structure height without compromising the image quality. The inks were made from copolymers containing a low percentage of different UV cross-linkable repeat units: nitrobenzoxadiazole (NBD), coumarin (COU), and/or benzophenone (BP). The base polymer of the here presented model system was an antimicrobially active poly(oxanorbornene) (SMAMP), however the concept should be transferable to many other polymer backbones. We describe the fabrication and characterization of the printed micro- and nanostructures made from pure SMAMP, NBD-SMAMP, coumarin-SMAMP, BP-SMAMP, BP-NBD-SMAMP and BP-coumarin-SMAMP polymer inks. The photo-dimerization of COU during UV irradiation at λ = 254 nm was confirmed by UV-Vis spectroscopy. Since NBD and COU are fluorescent, the polymer could be visualized by fluorescence microscopy. Additionally, their height profiles were measured by atomic force microscopy (AFM). The heights of the 3D surface-attached polymer networks obtained from the here presented polymer inks correlated with the gel-content of the corresponding unstructured polymer layers, and thus with the cross-linking efficiency of the NBD, COU and BP cross-linkers. Due to being covalently cross-linked, these 3D-surface attached polymer structures were solvent-stable and stable in aqueous surroundings.

6.
Macromol Rapid Commun ; 38(20)2017 Oct.
Article in English | MEDLINE | ID: mdl-28846821

ABSTRACT

Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/growth & development , Biofilms/drug effects , Polymers/chemistry , Anti-Infective Agents/chemistry , Bacteria/drug effects , Polymers/pharmacology , Spectroscopy, Fourier Transform Infrared , Surface Properties
7.
Biomacromolecules ; 18(4): 1373-1386, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28269987

ABSTRACT

A simultaneously antimicrobial, protein-repellent, and cell-compatible surface-attached polymer network is reported, which reduces the growth of bacterial biofilms on surfaces through its multifunctionality. The coating was made from a poly(oxonorbornene)-based zwitterion (PZI), which was surface-attached and cross-linked in one step by simultaneous UV-activated CH insertion and thiol-ene reaction. The process was applicable to both laboratory surfaces like silicon, glass, and gold and real-life surfaces like polyurethane foam wound dressings. The chemical structure and physical properties of the PZI surface and the two reference surfaces SMAMP ("synthetic mimic of an antimicrobial peptide"), an antimicrobial but protein-adhesive polymer coating, and PSB (poly(sulfobetaine)), a protein-repellent but not antimicrobial polyzwitterion coating were characterized by Fourier transform infrared spectroscopy, ellipsometry, contact angle measurements, photoelectron spectroscopy, swellability measurements (using surface plasmon resonance spectroscopy, SPR), zeta potential measurements, and atomic force microscopy. The time-dependent antimicrobial activity assay (time-kill assay) confirmed the high antimicrobial activity of the PZI; SPR was used to demonstrate that it was also highly protein-repellent. Biofilm formation studies showed that the material effectively reduced the growth of Escherichia coli and Staphylococcus aureus biofilms. Additionally, it was shown that the PZI was highly compatible with immortalized human mucosal gingiva keratinocytes and human red blood cells using the Alamar Blue assay, the live-dead stain, and the hemolysis assay. PZI thus may be an attractive coating for biomedical applications, particularly for the fight against bacterial biofilms on medical devices and in other applications.


Subject(s)
Anti-Infective Agents/chemistry , Bacterial Adhesion/drug effects , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Polymers/chemistry , Adhesins, Bacterial/chemistry , Adsorption , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Betaine/analogs & derivatives , Betaine/chemistry , Biofilms/growth & development , Cells, Cultured , Coated Materials, Biocompatible/adverse effects , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/pharmacology , Erythrocytes/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , Humans , Keratinocytes/drug effects , Microscopy, Atomic Force , Molecular Structure , Polymers/adverse effects , Polymers/chemical synthesis , Polymers/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Surface Plasmon Resonance , Surface Properties
8.
Macromol Chem Phys ; 218(21)2017 Nov.
Article in English | MEDLINE | ID: mdl-34404977

ABSTRACT

The synthesis and characterization of a series of green, blue and red-fluorescent exo-oxanorbornene acid and imide monomers carrying nitrobenzofurazan, coumarin, and Rhodamin B, respectively, as fluorophores is presented. These monomers carry oxanorbornene as polymerizable unit, and were readily copolymerized with bioactive functional oxanorbornene monomers by ring-opening metathesis polymerization (ROMP), as demonstrated by gel permeation chromatography and NMR spectroscopy. Due to the ease of synthesis of these monomers, and their cost-effectiveness compared many to other fluorescent probes, they are useful for biomaterials applications.

9.
Bioresour Technol ; 167: 484-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25011079

ABSTRACT

Hydrolysis of ionic cellulose (IC), 1,3-dimethylimidazolium cellulose phosphite, which could be synthesized from cellulose and dimethylimidazolium methylphosphite ([Dmim][(OCH3)(H)PO2]) ionic liquid, was conducted for the synthesis of glucose. The reaction without catalysts at 150°C for 12h produced glucose with 14.6% yield. To increase the hydrolysis yield, various acid catalysts were used, in which the sulfonated active carbon (AC-SO3H) performed the best catalytic activity in the IC hydrolysis. In the presence of AC-SO3H, the yields of glucose reached 42.4% and 53.9% at the reaction condition of 150°C for 12h and 180°C for 1.5h, respectively; however the yield decreased with longer reaction time due to the degradation of glucose. Consecutive catalyst reuse experiments on the IC hydrolysis demonstrated the catalytic activity of AC-SO3H persisted at least through four successive uses.


Subject(s)
Cellulose/chemistry , Glucose/chemistry , Catalysis , Charcoal/chemistry , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Glucose/analysis , Hydrolysis , Ions , Recycling , Solubility , Sulfonic Acids/chemistry , Water
10.
Bioresour Technol ; 164: 221-31, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24859214

ABSTRACT

Among all the feasible thermochemical conversion processes, concentrated acid hydrolysis has been applied to break the crystalline structure of cellulose efficiently and scale up for mass production as lignocellulosic biomass fractionation process. Process conditions are optimized by investigating the effect of decrystallization sulfuric acid concentration (65-80 wt%), hydrolysis temperature (80°C and 100°C), hydrolysis reaction time (during two hours), and biomass species (oak wood, pine wood, and empty fruit bunch (EFB) of palm oil) toward sugar recovery. At the optimum process condition, 78-96% sugars out of theoretically extractable sugars have been fractionated by concentrated sulfuric acid hydrolysis of the three different biomass species with 87-90 g/L sugar concentration in the hydrolyzate and highest recalcitrance of pine (softwood) was determined by the correlation of crystallinity index and sugar yield considering reaction severity.


Subject(s)
Biomass , Biotechnology/methods , Carbohydrates/isolation & purification , Lignin/chemistry , Sulfuric Acids/pharmacology , Cellulose/chemistry , Crystallization , Fruit/chemistry , Glucose/analysis , Hydrolysis/drug effects , Palm Oil , Pinus/chemistry , Plant Oils/chemistry , Quercus/chemistry , Temperature , Time Factors , Wood , Xylose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL