Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 42(3): 444-463.e10, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38428410

ABSTRACT

Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.


Subject(s)
Lymphoma, Follicular , Humans , B-Lymphocytes , Lymphoma, Follicular/genetics , Multiomics , Prospective Studies , Recurrence , Tumor Microenvironment , Clinical Trials as Topic
2.
Cells ; 11(22)2022 11 11.
Article in English | MEDLINE | ID: mdl-36429007

ABSTRACT

The problem of isolating high-quality total RNA from intervertebral discs has no recognized solution yet. This is due to the extremely low content of live cells in the samples and the voluminous intercellular matrix. A variety of published protocols focused on isolating RNA from articular cartilage have recommended the use of expensive equipment, enzymatic matrix cleavage, or cell culture. In our study, we used a combination of the traditional QIAzol protocol (Qiagen, Germany) and RNEasy column purification (Qiagen, Germany) to obtain high-quality RNA from post-surgical intervertebral disc fragments. Only a mortar and a pestle were used for grinding, making our method particularly accessible. The isolated RNA with a RIN of ~7 is suitable for studying the expression profile of chondrocytes in situ. RNA-seq analysis of three samples demonstrated cell type ratios to be mostly relevant to intervertebral disc tissues, with over 70% of the chondrocytes of the three subtypes having an admixture of blood-related cells.


Subject(s)
Cartilage, Articular , Intervertebral Disc , Humans , RNA-Seq , Cartilage, Articular/metabolism , Chondrocytes/metabolism , RNA/metabolism
3.
Int J Mol Sci ; 21(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113971

ABSTRACT

Dioxins are one of the most potent anthropogenic poisons, causing systemic disorders in embryonic development and pathologies in adults. The mechanism of dioxin action requires an aryl hydrocarbon receptor (AhR), but the downstream mechanisms are not yet precisely clear. Here, we performed a meta-analysis of all available transcriptome datasets taken from human cell cultures exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Differentially expressed genes from different experiments overlapped partially, but there were a number of those genes that were systematically affected by TCDD. Some of them have been linked to toxic dioxin effects, but we also identified other attractive targets. Among the genes that were affected by TCDD, there are functionally related gene groups that suggest an interplay between retinoic acid, AhR, and Wnt signaling pathways. Next, we analyzed the upstream regions of differentially expressed genes and identified potential transcription factor (TF) binding sites overrepresented in the genes responding to TCDD. Intriguingly, the dioxin-responsive element (DRE), the binding site of AhR, was not overrepresented as much as other cis-elements were. Bioinformatics analysis of the AhR binding profile unveils potential cooperation of AhR with E2F2, CTCFL, and ZBT14 TFs in the dioxin response. We discuss the potential implication of these predictions for further dioxin studies.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Gene Regulatory Networks/drug effects , Polychlorinated Dibenzodioxins/toxicity , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Databases, Genetic , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Molecular Sequence Annotation , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Analysis, RNA
4.
Genes (Basel) ; 11(4)2020 04 17.
Article in English | MEDLINE | ID: mdl-32316383

ABSTRACT

Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the group of genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment, Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO terms not enriched compared to the genome background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated response can be the valuable source to search for possible regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and a web-server.


Subject(s)
Algorithms , Biomarkers/analysis , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Transcriptome , Databases, Genetic , Humans
5.
J Bioinform Comput Biol ; 14(2): 1641009, 2016 04.
Article in English | MEDLINE | ID: mdl-27122321

ABSTRACT

Auxin is the major regulator of plant growth and development. It regulates gene expression via a family of transcription factors (ARFs) that bind to auxin responsive elements (AuxREs) in the gene promoters. The canonical AuxREs found in regulatory regions of many auxin responsive genes contain the TGTCTC core motif, whereas ARF binding site is a degenerate TGTCNN with TGTCGG strongly preferred. Thereby two questions arise: which TGTCNN variants are functional AuxRE cores and whether different TGTCNN variants have distinct functional roles? In this study, we performed meta-analysis of microarray data to reveal TGTCNN variants essential for auxin response and to characterize their functional features. Our results indicate that four TGTCNN motifs (TGTCTC, TGTCCC, TGTCGG, and TGTCTG) are associated with auxin up-regulation and two (TGTCGG, TGTCAT) with auxin down-regulation, but to a lesser extent. The genes having some of these motifs in their regulatory regions showed time-specific auxin response. Functional annotation of auxin up- and down-regulated genes also revealed GO terms specific for the auxin-regulated genes with certain TGTCNN variants in their promoters. Our results provide an idea that various TGTCNN motifs may play distinct roles in the auxin regulation of gene expression.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Indoleacetic Acids/metabolism , Response Elements , 5' Untranslated Regions , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Binding Sites , Gene Expression Regulation, Plant , Nucleotide Motifs , Oligonucleotide Array Sequence Analysis , Plant Growth Regulators/metabolism , Transcriptome
6.
BMC Genomics ; 15 Suppl 12: S4, 2014.
Article in English | MEDLINE | ID: mdl-25563792

ABSTRACT

Auxin responsive elements (AuxRE) were found in upstream regions of target genes for ARFs (Auxin response factors). While Chip-seq data for most of ARFs are still unavailable, prediction of potential AuxRE is restricted by consensus models that detect too many false positive sites. Using sequence analysis of experimentally proven AuxREs, we revealed both an extended nucleotide context pattern for AuxRE itself and three distinct types of its coupling motifs (Y-patch, AuxRE-like, and ABRE-like), which together with AuxRE may form the composite elements. Computational analysis of the genome-wide distribution of the predicted AuxREs and their impact on auxin responsive gene expression allowed us to conclude that: (1) AuxREs are enriched around the transcription start site with the maximum density in 5'UTR; (2) AuxREs mediate auxin responsive up-regulation, not down-regulation. (3) Directly oriented single AuxREs and reverse multiple AuxREs are mostly associated with auxin responsiveness. In the composite AuxRE elements associated with auxin response, ABRE-like and Y-patch are 5'-flanking or overlapping AuxRE, whereas AuxRE-like motif is 3'-flanking. The specificity in location and orientation of the coupling elements suggests them as potential binding sites for ARFs partners.


Subject(s)
Arabidopsis/genetics , Indoleacetic Acids/metabolism , Response Elements , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Genomics , Nucleotide Motifs
SELECTION OF CITATIONS
SEARCH DETAIL
...