Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39057392

ABSTRACT

Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.

2.
J Fungi (Basel) ; 9(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623631

ABSTRACT

Plant biomass is one of the most abundant renewable carbon sources, which holds great potential for replacing current fossil-based production of fuels and chemicals. In nature, fungi can efficiently degrade plant polysaccharides by secreting a broad range of carbohydrate-active enzymes (CAZymes), such as cellulases, hemicellulases, and pectinases. Due to the crucial role of plant biomass-degrading (PBD) CAZymes in fungal growth and related biotechnology applications, investigation of their genomic diversity and transcriptional dynamics has attracted increasing attention. In this project, we systematically compared the genome content of PBD CAZymes in six taxonomically distant species, Aspergillus niger, Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium, and Dichomitus squalens, as well as their transcriptome profiles during growth on nine monosaccharides. Considerable genomic variation and remarkable transcriptomic diversity of CAZymes were identified, implying the preferred carbon source of these fungi and their different methods of transcription regulation. In addition, the specific carbon utilization ability inferred from genomics and transcriptomics was compared with fungal growth profiles on corresponding sugars, to improve our understanding of the conversion process. This study enhances our understanding of genomic and transcriptomic diversity of fungal plant polysaccharide-degrading enzymes and provides new insights into designing enzyme mixtures and metabolic engineering of fungi for related industrial applications.

3.
Nat Commun ; 11(1): 1106, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32107379

ABSTRACT

Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.


Subject(s)
Aspergillus flavus/genetics , Aspergillus oryzae/genetics , Genome, Fungal/genetics , Genomics , Aspergillus flavus/classification , Aspergillus flavus/enzymology , Aspergillus oryzae/classification , Aspergillus oryzae/enzymology , Bioreactors , Carbohydrate Metabolism/genetics , Crops, Agricultural/microbiology , DNA, Fungal/genetics , Fermentation , Fermented Foods , Fungal Proteins/genetics , Fungal Proteins/metabolism , Metabolic Networks and Pathways/genetics , Multigene Family , Phenotype , Phylogeny , Plant Diseases/prevention & control , Secondary Metabolism/genetics
4.
Environ Microbiol ; 22(3): 1154-1166, 2020 03.
Article in English | MEDLINE | ID: mdl-31876091

ABSTRACT

Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi-omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra-colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin-rich sugar beet pulp and to xylan-rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony.


Subject(s)
Adaptation, Physiological , Aspergillus niger/metabolism , Carbon/metabolism , Biomass , Hyphae/metabolism , Pectins/metabolism
5.
BMC Genomics ; 20(1): 853, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31726994

ABSTRACT

BACKGROUND: Enzymatic plant biomass degradation by fungi is a highly complex process and one of the leading challenges in developing a biobased economy. Some industrial fungi (e.g. Aspergillus niger) have a long history of use with respect to plant biomass degradation and for that reason have become 'model' species for this topic. A. niger is a major industrial enzyme producer that has a broad ability to degrade plant based polysaccharides. A. niger wild-type, the (hemi-)cellulolytic regulator (xlnR) and xylulokinase (xkiA1) mutant strains were grown on a monocot (corn stover, CS) and dicot (soybean hulls, SBH) substrate. The xkiA1 mutant is unable to utilize the pentoses D-xylose and L-arabinose and the polysaccharide xylan, and was previously shown to accumulate inducers for the (hemi-)cellulolytic transcriptional activator XlnR and the arabinanolytic transcriptional activator AraR in the presence of pentoses, resulting in overexpression of their target genes. The xlnR mutant has reduced growth on xylan and down-regulation of its target genes. The mutants therefore have a similar phenotype on xylan, but an opposite transcriptional effect. D-xylose and L-arabinose are the most abundant monosaccharides after D-glucose in nearly all plant-derived biomass materials. In this study we evaluated the effect of the xlnR and xkiA1 mutation during growth on two pentose-rich substrates by transcriptome analysis. RESULTS: Particular attention was given to CAZymes, metabolic pathways and transcription factors related to the plant biomass degradation. Genes coding for the main enzymes involved in plant biomass degradation were down-regulated at the beginning of the growth on CS and SBH. However, at a later time point, significant differences were found in the expression profiles of both mutants on CS compared to SBH. CONCLUSION: This study demonstrates the high complexity of the plant biomass degradation process by fungi, by showing that mutant strains with fairly straightforward phenotypes on pure mono- and polysaccharides, have much less clear-cut phenotypes and transcriptomes on crude plant biomass.


Subject(s)
Aspergillus niger/genetics , Gene Expression Profiling , Glycine max/microbiology , Mutation , Transcriptome , Zea mays/microbiology , Aspergillus niger/growth & development , Biodegradation, Environmental , Biomass , Cellulose/chemistry , Cellulose/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Hydrolysis
6.
Microorganisms ; 8(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888103

ABSTRACT

Marine fungi associated with macroalgae are an ecologically important group that have a strong potential for industrial applications. In this study, twenty-two marine fungi isolated from the brown seaweed Fucus sp. were examined for their abilities to produce algal and plant biomass degrading enzymes. Growth of these isolates on brown and green algal biomass revealed a good growth, but no preference for any specific algae. Based on the analysis of enzymatic activities, macroalgae derived fungi were able to produce algae specific and (hemi-)cellulose degrading enzymes both on algal and plant biomass. However, the production of algae specific activities was lower than the production of cellulases and xylanases. These data revealed the presence of different enzymatic approaches for the degradation of algal biomass by macroalgae derived fungi. In addition, the results of the present study indicate our poor understanding of the enzymes involved in algal biomass degradation and the mechanisms of algal carbon source utilization by marine derived fungi.

7.
Nat Genet ; 50(12): 1688-1695, 2018 12.
Article in English | MEDLINE | ID: mdl-30349117

ABSTRACT

Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter- and intraspecies genomic variation. We further predicted 17,903 carbohydrate-active enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.


Subject(s)
Aspergillus/genetics , Genetic Speciation , Genetic Variation , Genome, Fungal , Aspergillus/classification , Aspergillus/metabolism , Base Sequence , Carbohydrate Metabolism/genetics , Genome, Fungal/genetics , Multigene Family , Phylogeny , Species Specificity , Whole Genome Sequencing
8.
J Basic Microbiol ; 58(11): 957-967, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30168857

ABSTRACT

The physiological background of the unusually high cadmium tolerance (MIC50 > 2 mM) of Aspergillus fumigatus Af293 was investigated. The cadmium tolerance of the tested environmental and clinical A. fumigatus strains varied over a wide range (0.25 mM < MIC50 < 1 mM). Only the Af293 strain showed a MIC50 value of >2 mM, and this phenotype was accompanied by increased in vivo virulence in mice. A strong correlation was found between the cadmium tolerance and the transcription of the pcaA gene, which encodes a putative cadmium efflux pump. The cadmium tolerance also correlated with the iron tolerance and the extracellular siderophore production of the strains. In addition to these findings, Af293 did not show the synergism between iron toxicity and cadmium toxicity that was detected in the other strains. Based on these results, we suggest that the primary function of PcaA should be acting as a ferrous iron pump and protecting cells from iron overload. Nevertheless, the heterologous expression of pcaA may represent an attractive strain improvement strategy to construct fungal strains for use in biosorption or biomining processes or to prevent accumulation of this toxic metal in crops.


Subject(s)
Aspergillus fumigatus/physiology , Cadmium/metabolism , Adenosine Triphosphatases/genetics , Animals , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/pathogenicity , Cadmium/toxicity , Cation Transport Proteins/genetics , Female , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Iron/metabolism , Iron/toxicity , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Siderophores/biosynthesis , Transcription, Genetic , Virulence
9.
Methods Mol Biol ; 1775: 133-137, 2018.
Article in English | MEDLINE | ID: mdl-29876815

ABSTRACT

In this chapter we describe a method to generate mutants of filamentous fungi using their genomic plasticity and rapid adaptability to their environment. This method is based on spontaneous mutations occurring in relation to improved growth of fungi on media by repeated inoculation resulting in adaptation of the strain to the condition. The critical aspect of this method is the design of the selective media, which will depend strongly on the phenomenon that will be studied. This method is advantageous over UV or chemical random mutagenesis as it results in a lower frequency of undesired mutations and can result in strains that combined with (post)genomic approaches can enhance our understanding of the mechanisms driving various biological processes. In addition, it can be used to obtain better strains for various industrial applications. The method described here is specific for sporulating fungi and has so far not yet been tested for nonsporulating fungi.


Subject(s)
Evolution, Molecular , Fungi/genetics , Molecular Biology/methods , Mutagenesis/genetics , Adaptation, Physiological/genetics , Genome, Fungal/genetics , Mutation
10.
Front Microbiol ; 9: 3058, 2018.
Article in English | MEDLINE | ID: mdl-30619145

ABSTRACT

Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.

11.
J Microbiol Methods ; 143: 38-43, 2017 12.
Article in English | MEDLINE | ID: mdl-28987554

ABSTRACT

D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding ß-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per µg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications.


Subject(s)
Gene Transfer Techniques , Polyporaceae/genetics , Protoplasts , Transformation, Genetic , Drug Resistance, Fungal , Gene Expression , Humans , Kanamycin Kinase/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Promoter Regions, Genetic , Tubulin/genetics
12.
Environ Microbiol ; 19(11): 4587-4598, 2017 11.
Article in English | MEDLINE | ID: mdl-29027734

ABSTRACT

In A. niger, two transcription factors, AraR and XlnR, regulate the production of enzymes involved in degradation of arabinoxylan and catabolism of the released l-arabinose and d-xylose. Deletion of both araR and xlnR in leads to reduced production of (hemi)cellulolytic enzymes and reduced growth on arabinan, arabinogalactan and xylan. In this study, we investigated the colonization and degradation of wheat bran by the A. niger reference strain CBS 137562 and araR/xlnR regulatory mutants using high-resolution microscopy and exo-proteomics. We discovered that wheat bran flakes have a 'rough' and 'smooth' surface with substantially different affinity towards fungal hyphae. While colonization of the rough side was possible for all strains, the xlnR mutants struggled to survive on the smooth side of the wheat bran particles after 20 and 40 h post inoculation. Impaired colonization ability of the smooth surface of wheat bran was linked to reduced potential of ΔxlnR to secrete arabinoxylan and cellulose-degrading enzymes and indicates that XlnR is the major regulator that drives colonization of wheat bran in A. niger.


Subject(s)
Aspergillus niger/growth & development , Aspergillus niger/metabolism , Fungal Proteins/metabolism , Trans-Activators/metabolism , Triticum/metabolism , Xylans/metabolism , Arabinose/metabolism , Aspergillus niger/genetics , Biomass , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Polysaccharides/metabolism , Proteomics , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/microbiology , Xylose/metabolism
13.
Genome Biol ; 18(1): 28, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28196534

ABSTRACT

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Subject(s)
Adaptation, Biological , Aspergillus/classification , Aspergillus/genetics , Biodiversity , Genome, Fungal , Genomics , Aspergillus/metabolism , Biomass , Carbon/metabolism , Computational Biology/methods , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , DNA Methylation , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genomics/methods , Humans , Metabolic Networks and Pathways , Molecular Sequence Annotation , Multigene Family , Oxidoreductases/metabolism , Phylogeny , Plants/metabolism , Plants/microbiology , Secondary Metabolism/genetics , Signal Transduction , Stress, Physiological/genetics
14.
Microb Biotechnol ; 10(2): 323-329, 2017 03.
Article in English | MEDLINE | ID: mdl-27153937

ABSTRACT

Small secreted proteins (SSP) have been defined as proteins containing a signal peptide and a sequence of less than 300 amino acids. In this analysis, we have compared the secretion pattern of SSPs among eight aspergilli species in the context of plant biomass degradation and have highlighted putative interesting candidates that could be involved in the degradative process or in the strategies developed by fungi to resist the associated stress that could be due to the toxicity of some aromatic compounds or reactive oxygen species released during degradation. Among these candidates, for example, some stress-related superoxide dismutases or some hydrophobic surface binding proteins (HsbA) are specifically secreted according to the species . Since these latter proteins are able to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation, a synergistic action of HsbA with the degradative system may be considered and need further investigations. These SSPs could have great applications in biotechnology by optimizing the efficiency of the enzymatic systems for biomass degradation.


Subject(s)
Aspergillus/metabolism , Fungal Proteins/analysis , Fungal Proteins/metabolism , Lignin/metabolism , Proteome/analysis , Biomass , Plants/microbiology , Proteomics
15.
Int J Food Microbiol ; 237: 17-27, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27541978

ABSTRACT

We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable availability. Future studies will aim to purify these enzymes to test their suitability for use in similar artisanal cheeses or in large scale commercial cheeses.


Subject(s)
Bacteria/enzymology , Cheese/microbiology , Fungi/enzymology , Lipase/metabolism , Milk/microbiology , Peptide Hydrolases/metabolism , Animals , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Lipase/genetics , Microbiota , Peptide Hydrolases/genetics , Sheep
16.
N Biotechnol ; 33(6): 834-841, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27469436

ABSTRACT

In industrial applications, efficient mixtures of polysaccharide-degrading enzymes are needed to convert plant biomass into fermentable sugars. Most of the commercially produced lignocellulolytic enzymes are from a limited number of filamentous fungi, such as Trichoderma and Aspergillus species. In contrast, the plant biomass-degrading capacity of Penicillia has been less explored. We performed growth profiling of several Penicillia on diverse plant biomass-related substrates demonstrating the capacity particularly of Penicillium subrubescens to degrade crude lignocellulose feedstock, as well as polysaccharides, and metabolise their monomeric components. We focussed on the lignocellulolytic potential of P. subrubescens FBCC1632, which produced a variable set of (hemi-)cellulolytic activities on plant biomass substrates with activity levels comparable to those of Aspergillus niger. The good ability of the extracellular enzyme mixtures produced by P. subrubescens to saccharify complex plant biomasses, wheat bran and sugar beet pulp, indicated a high potential for this strain as a producer of industrial enzyme cocktails.


Subject(s)
Aspergillus niger/enzymology , Penicillium/enzymology , Biomass , Biotechnology , Fermentation , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Industrial Microbiology , Lignin/metabolism , Penicillium/growth & development , Polysaccharides/metabolism
17.
Biotechnol Lett ; 38(1): 65-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26354856

ABSTRACT

OBJECTIVES: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. RESULTS: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and ß-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. CONCLUSIONS: Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.


Subject(s)
Aspergillus niger/enzymology , Fungal Proteins/metabolism , Saccharum/metabolism , Trichoderma/enzymology , Aspergillus niger/genetics , Biomass , Fungal Proteins/genetics , Hydrolysis , Mutation , Organisms, Genetically Modified , Trichoderma/genetics , Triticum/chemistry
18.
PLoS One ; 10(11): e0143200, 2015.
Article in English | MEDLINE | ID: mdl-26580075

ABSTRACT

In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.


Subject(s)
Aspergillus nidulans/genetics , Epistasis, Genetic , Escherichia coli Proteins/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Repressor Proteins/genetics , Trans-Activators/genetics , Amino Acid Sequence , Arabinose/metabolism , Aspergillus nidulans/metabolism , Escherichia coli Proteins/metabolism , Fungal Proteins/metabolism , Galactose/metabolism , Gene Expression Profiling , Molecular Sequence Data , Phenotype , Repressor Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Trans-Activators/metabolism , Xylose/metabolism
19.
Biotechnol Biofuels ; 8: 107, 2015.
Article in English | MEDLINE | ID: mdl-26236396

ABSTRACT

BACKGROUND: Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails. RESULTS: It is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition. CONCLUSIONS: These data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement of saccharification efficiency than adding specific enzymes to the mixture of a single fungus, which is currently the most common approach used in biotechnology.

20.
Fungal Genet Biol ; 72: 168-181, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25173823

ABSTRACT

Ectomycorrhizal fungi, living in soil forests, are required microorganisms to sustain tree growth and productivity. The establishment of mutualistic interaction with roots to form ectomycorrhiza (ECM) is not well known at the molecular level. In particular, how fungal and plant cell walls are rearranged to establish a fully functional ectomycorrhiza is poorly understood. Nevertheless, it is likely that Carbohydrate Active enZymes (CAZyme) produced by the fungus participate in this process. Genome-wide transcriptome profiling during ECM development was used to examine how the CAZome of Laccaria bicolor is regulated during symbiosis establishment. CAZymes active on fungal cell wall were upregulated during ECM development in particular after 4weeks of contact when the hyphae are surrounding the root cells and start to colonize the apoplast. We demonstrated that one expansin-like protein, whose expression is specific to symbiotic tissues, localizes within fungal cell wall. Whereas L. bicolor genome contained a constricted repertoire of CAZymes active on cellulose and hemicellulose, these CAZymes were expressed during the first steps of root cells colonization. L. bicolor retained the ability to use homogalacturonan, a pectin-derived substrate, as carbon source. CAZymes likely involved in pectin hydrolysis were mainly expressed at the stage of a fully mature ECM. All together, our data suggest an active remodelling of fungal cell wall with a possible involvement of expansin during ECM development. By contrast, a soft remodelling of the plant cell wall likely occurs through the loosening of the cellulose microfibrils by AA9 or GH12 CAZymes and middle lamella smooth remodelling through pectin (homogalacturonan) hydrolysis likely by GH28, GH12 CAZymes.


Subject(s)
Gene Expression Profiling , Gene Expression , Genomics , Glycoside Hydrolases/biosynthesis , Laccaria/enzymology , Laccaria/physiology , Symbiosis , Glycoside Hydrolases/genetics , Laccaria/genetics , Laccaria/isolation & purification , Plant Roots/microbiology , Populus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL