Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
J Environ Manage ; 360: 121183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795467

ABSTRACT

The aims of the study were 1) to assess the suitability of selected amendments for reducing the mobility of metals in sediments by evaluating their effects on metal sorption capacity, and 2) to assess the ecotoxicity of sediment/amendment mixtures. Three different amendments were tested: cellulose waste, biochar, and dolomite. The efficiency of metal immobilization in mixtures was dependent on pH, which increased with concentrations of amendment. The higher negative charge observed for dolomite and cellulose waste corresponded with greater attraction of cations and enhanced metal sorption. For cellulose waste, the highest values of the Q parameter were attributed to the presence of OH groups, which corresponded with the highest immobilization of metals. Biochar reduced the negative surface charge, which highlights the importance of additional factors such as high specific surface area and volume of pores in metal immobilization. All amendments increased the SSA and VN2, indicating a higher number of sorption sites for metal immobilization. Most bioassays established a reduction of the ecotoxicity for amendments. Mixtures with dolomite (25%, 45% doses) and biochar (45% dose) were low toxic. Mixtures with cellulose waste were toxic or highly toxic. The mobility of metals from contaminated sediments can be limited by reused industry side products, which could contribute to further closing the circular economy loop.


Subject(s)
Charcoal , Geologic Sediments , Metals , Geologic Sediments/chemistry , Charcoal/chemistry , Metals/toxicity , Metals/chemistry , Adsorption , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
2.
Sci Rep ; 13(1): 10626, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391588

ABSTRACT

Heavy metals are one of the components of smog, which is mainly the product of burning fossil fuels in residential buildings. These elements, introduced into the body of cattle by inhalation, may enter the milk. The goal of this study was to assess the impact of particulate pollution in the atmospheric air on the concentration of particulate matter in the air of a dairy cattle barn and on the content of selected heavy metals in milk from cows present in the building. Measurements were taken between November and April (148 measurement days). The calculations carried out showed a high correlation (RS = + 0.95) between the concentrations of particulates measured outside and inside the barn, which is indicative of a significant impact of the atmospheric air on the particulate pollution level of the livestock building. The number of days in excess of the daily standard for PM10 inside was 51. The conducted analysis of the chemical composition of the milk collected under high particulate pollution (February) showed that the permitted lead level had been exceeded-21.93 µg/kg (norm 20.00 µg/kg).


Subject(s)
Metals, Heavy , Particulate Matter , Female , Animals , Cattle , Milk , Lead , Dust
3.
Sci Total Environ ; 882: 163574, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37084910

ABSTRACT

Heavy metal contamination of soils is one of the main factors contributing to soil quality decline and loss of biodiversity, which is also associated with plant contamination, as metals accumulate in the surface layer of soils and then enter the trophic chain. The aims of the study were to assess the mobility and bioavailability of metals in soils to plants, and to estimate the ecological and health risks associated with heavy metal content in soils. 320 topsoil and 206 plant samples were collected. Fractional analysis showed that for most of the samples, there was no or low risk associated with the mobility of Cr, Pb, Cu, Ni, Zn, and low and medium for Cd. High and very high metal release risk was only shown for Cd (28 % of samples), and Zn and Pb (2 % of samples). The bioaccumulation factor found moderate levels of accumulation for Cd, Zn, Cu, Ni. High accumulation of Cd and Zn was found in 38 % and 15 % of plant samples. Alivibrio fischeri proved to be a more sensitive indicator of soil ecotoxicity compared to Sinapis alba. In the 81 % of the soil samples found a low probability of adverse effects on ecological receptors associated with exposure to soilborne metals. In the case of human health risk, no harmful health effects were observed due to accidental ingestion of metal-containing soils in the study area. In assessing metal risks, the choice of indicators is crucial. Moreover, the properties of soils have a significant impact on the mobility of metals and their bioaccumulation by plants. This means that the more varied the choice of indicators, the more comprehensive, reliable and close to reality the risk assessment of heavy metals in soils will be.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil , Cadmium/analysis , Bioaccumulation , Lead/analysis , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis , Plants , Risk Assessment , China
4.
J Trace Elem Med Biol ; 77: 127145, 2023 May.
Article in English | MEDLINE | ID: mdl-36921371

ABSTRACT

Quantitative analysis of the trace element content of human intervertebral discs (IVDs) is essential because it can identify specific enzymes or metabolites that may be related to human intervertebral disc degeneration (IVDD). The goal of this study was to assess the concentrations of copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), sodium (Na), magnesium (Mg), potassium (K), phosphorus (P), and calcium (Ca) in serum samples obtained from patients with IVDD in comparison to healthy volunteers (a control group). The study group consisted of 113 Caucasian patients qualified by a specialist neurosurgeon for microdiscectomy. The control group consisted of 113 healthy volunteers who met the eligibility criteria for blood donors. The examined clinical material was the serum samples obtained from both groups.Based on the quantitative analysis of selected elements, there were statistically significantly (p 0.05) higher concentrations of Cu (1180 µg/L±800 µg/L vs. 1230 µg/L±750 µg/L), Zn (790 µg/L±300 µg/L vs. 850 µg/L±200 µg/L), and Mg (21730 µg/L±4360 µg/L vs. 23820 µg/L±4990 µg/L) in the serum of healthy volunteers compared to those in the study group. In addition, statistically significant changes were not detected in the concentrations of any elements among either sex in either the study or control group or in their body mass index (BMI) values (p > 0.05). In the serum samples from the study group, the strongest relationships were noted between the concentrations of Zn and Pb (r = 0.61), Zn and P (r = 0.69), Zn and Ca (r = 0.84), Zn and Cu (r = 0.83), Mg and Ca (r = 0.74), and Ca and P (r = 0.98).It has been indicated that, above all, the concentrations of Cu, Zn, Ca, and Mg depend on the advancement of radiological changes, according to the Pfirrmann scale. However, no influence on pain intensity was found, depending on the concentration of the assessed elements.The analysis indicates that the determination of serum Cu, Zn, Ca, and Mg concentrations may have diagnostic significance in predicting the onset of lumbosacral IVDD. The predictive evaluation of changes in the concentrations of selected elements in patients with degenerative lumbar IVD lesions appears to be a promising, cost-effective strategy.


Subject(s)
Intervertebral Disc Degeneration , Trace Elements , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Lead , Trace Elements/analysis , Zinc , Copper , Magnesium , Calcium , Sodium
5.
Chemosphere ; 310: 136760, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36243080

ABSTRACT

The quality of bottom sediments is a key factor for many functions of dam reservoirs, which include water supply, flood control and recreation. The aim of the study was to combine different pollution indices in a critical generic risk assessment of metal contamination of bottom sediments. Both geochemical and ecological indices reflected that sediment contamination was dominated by Zn, Pb and Cd. The ecological risk indices suggested a high riks for all three metals, whereas human health risks were high for Pb and Cd. An occasional local contamination of sediments with Cr and Ni was revealed, although at levels not expected to cause concerns about potential ecological or health risk. Sediments from the Rybnik reservoir for Cu only revealed a high potential ecological risk. EF turned to be as being the most useful, whereas TRI (∑TRI) was the most important ecological index. All multi-element indices suggested similar trends, indicating that Zn, Pb and Cd taken altogether had the greatest impact on the level of sediment contamination and posed the greatest potential ecological and health risks to organisms. The use of sequential BCR extraction and ecotoxicity analyses allowed for a multi-facetted generic risk assessment of metals in sediments of dam reservoirs.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis , Cadmium/analysis , Lead/analysis , Risk Assessment , China
6.
Article in English | MEDLINE | ID: mdl-35897416

ABSTRACT

Intervertebral disc degeneration (IVDD) is a complex and progressive process of disc aging. One of the most important causes of changes in the internal environment, leading to IVDD, can be changes in the concentration of individual metal elements. This study aimed to analyze the concentrations of copper, iron, manganese, lead, zinc, sodium, potassium, phosphorus, and calcium in the degenerated intervertebral discs of the lumbosacral spine, compared to healthy intervertebral discs. The study group (S) consisted of 113 Caucasian patients, qualified by a specialist surgeon for IVDD of the lumbosacral spine. The control group (C) consisted of 81 individuals. The biological material was obtained from Caucasian human cadavers during post-mortem examination. The concentrations of individual elements were assessed using inductively coupled plasma−optical emission spectroscopy (ICP-OES). Statistically significant differences in the concentrations of microelements, depending on the degree of pain intensity, were noted for only potassium (p < 0.05). Statistically significant differences in the concentrations of the assessed microelements, depending on the degree of radiological advancement of the lesions, were noted for copper and iron (p < 0.05). In the degenerated intervertebral discs, the strongest relationships were noted between the concentrations of zinc and lead (r = 0.67; p < 0.05), zinc and phosphorus (r = 0.74; p < 0.05), and zinc and calcium (r = 0.77; p < 0.05). It has been indicated that, above all, the concentrations of copper and iron depend on the advancement of radiological changes, according to the Pfirrmann scale; however, no influence on the pain intensity, depending on the concentration of the assessed elements, was found.


Subject(s)
Intervertebral Disc Degeneration , Calcium , Copper , Humans , Intervertebral Disc Degeneration/etiology , Iron , Magnetic Resonance Imaging/adverse effects , Phosphorus , Potassium , Zinc
7.
Environ Geochem Health ; 40(6): 2325-2342, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29589150

ABSTRACT

The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.


Subject(s)
Cadmium/analysis , Environmental Monitoring , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Poland , Principal Component Analysis , Risk
8.
Environ Geochem Health ; 40(1): 435-450, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28229257

ABSTRACT

The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg-1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg-1 d.m. (0.01 mol dm-3 CaCl2), and between 0.03 and 71.54 mg kg-1 d.m. (1 mol dm-3 NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.


Subject(s)
Ecology , Soil Pollutants/analysis , Soil/chemistry , Zinc/analysis , Biological Availability , Carbon/analysis , Environmental Monitoring/methods , Poland , Principal Component Analysis , Risk Assessment , Soil Pollutants/metabolism , Soil Pollutants/toxicity
9.
Carbohydr Polym ; 134: 102-9, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26428105

ABSTRACT

Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations.


Subject(s)
Metals, Heavy/chemistry , Salts/chemistry , Solanum tuberosum/chemistry , Starch/chemistry , Zea mays/chemistry , Anions/chemistry , Cations/chemistry , Metals, Heavy/isolation & purification , Nitrates/chemistry , Oxidation-Reduction , Phosphorus/chemistry , Salts/isolation & purification , Solutions , Water/chemistry
10.
Ecotoxicol Environ Saf ; 110: 232-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25262112

ABSTRACT

The main objective of this study was to determine and describe the lead transfer in the soil-plant-animal system in areas polluted with this metal at varying degrees, with the use of mathematical forecasting methods and data mining tools contained in the Statistica 9.0 software programme. The starting point for the forecasting models comprised results derived from an analysis of different features of soil and plants, collected from 139 locations in an area covering 100km(2) around a lead-zinc ore mining and processing plant ('Boleslaw'), at Bukowno in southern Poland. In addition, the lead content was determined in the tissues and organs of 110 small rodents (mainly mice) caught in the same area. The prediction models, elaborated with the use of classification algorithms, forecasted with high probability the class (range) of pollution in animal tissues and organs with lead, based on various soil and plant properties of the study area. However, prediction models which use multilayer neural networks made it possible to calculate the content of lead (predicted versus measured) in animal tissues and organs with an excellent correlation coefficient.


Subject(s)
Animal Structures/chemistry , Environment , Lead/analysis , Models, Theoretical , Soil Pollutants/analysis , Algorithms , Animal Structures/drug effects , Animals , Environmental Pollution/analysis , Food Chain , Forecasting , Lead/toxicity , Mice , Plants/chemistry , Poland , Zinc/analysis
11.
J Phys Chem B ; 118(25): 7100-7, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24878058

ABSTRACT

In this study, interactions of dichromate ions with potato starch granules in highly acidic aqueous solutions and at different temperatures were investigated. It was found that the process underwent a reduction of Cr(2)O(7)(2-) to Cr(3+) accompanied by the formation of intermediate Cr(5+) ions detected by electron paramagnetic resonance (EPR) spectroscopy. The reactions took place after the attachment of dichromate anions to the granules and resulted in a lowering of the Cr(2)O(7)(2-) initial content in the solution. The newly formed Cr(3+) ions were both accumulated by the granules or remained in the solution. It was observed for the first time that the quantity of such ions taken by the granules from the solution was noticeably higher than that delivered by trivalent chromium salt solution. It was revealed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) that the chromium ions were not only adsorbed on the granule surface but also introduced into the granule interior and evenly distributed there. An activation energy of the reduction reaction equal to 65 kJ·mol(-1) and the optimal parameters of the process were established. The proposed mechanism could be useful for the bioremediation of industrial effluents polluted by hexavalent chromium compounds.


Subject(s)
Chromium/chemistry , Starch/chemistry , Adsorption , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Ions/chemistry , Oxidation-Reduction , Spectrometry, X-Ray Emission , Temperature , Water/chemistry
12.
J Environ Manage ; 132: 250-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24321285

ABSTRACT

The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 µg N-NH4(+) 2h(-1) g(-1))

Subject(s)
Metals, Heavy/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Urease/metabolism , beta-Fructofuranosidase/metabolism , Biodegradation, Environmental , Mining , Poland , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL