Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 143(9): 1667-1677, 2023 09.
Article in English | MEDLINE | ID: mdl-37612031

ABSTRACT

Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.


Subject(s)
Research Personnel , Skin , Humans , Consensus
2.
Stem Cell Reports ; 18(5): 1227-1243, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37084727

ABSTRACT

The molecular mechanisms allowing hair follicles to periodically activate their stem cells (HFSCs) are incompletely characterized. Here, we identify the transcription factor IRX5 as a promoter of HFSC activation. Irx5-/- mice have delayed anagen onset, with increased DNA damage and diminished HFSC proliferation. Open chromatin regions form near cell cycle progression and DNA damage repair genes in Irx5-/- HFSCs. DNA damage repair factor BRCA1 is an IRX5 downstream target. Inhibition of FGF kinase signaling partially rescues the anagen delay in Irx5-/- mice, suggesting that the Irx5-/- HFSC quiescent phenotype is partly due to failure to suppress Fgf18 expression. Interfollicular epidermal stem cells also show decreased proliferation and increased DNA damage in Irx5-/-mice. Consistent with a role for IRX5 as a promoter of DNA damage repair, we find that IRX genes are upregulated in many cancer types and that there is a correlation between IRX5 and BRCA1 expression in breast cancer.


Subject(s)
Hair Follicle , Stem Cells , Mice , Animals , Hair Follicle/metabolism , Stem Cells/metabolism , Signal Transduction , Gene Expression Regulation , DNA Damage , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
3.
Cell Rep ; 42(1): 111994, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36732947

ABSTRACT

Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unclear. Here, we use bulk and single-cell RNA sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering differences between palmar and plantar sites. Our approach reveals an altered immune environment in palmoplantar skin, with downregulation of diverse immunological processes and decreased immune cell populations. Further, we identify specific fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated keratinocyte analysis highlights major differences in basal cell fraction among the three sites and demonstrates the existence of two spinous keratinocyte populations constituting parallel, site-selective epidermal differentiation trajectories. In summary, this deep characterization of highly adapted palmoplantar skin contributes key insights into the fundamental biology of human skin and provides a valuable data resource for further investigation.


Subject(s)
Keratinocytes , Skin , Humans , Cell Differentiation , Hand , Cells, Cultured , Epidermis
4.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35900871

ABSTRACT

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.


Subject(s)
Epidermis , Single-Cell Analysis , Carbon/metabolism , Ceramides/metabolism , Epidermis/metabolism , Humans , Keratinocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...