Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 13(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513945

ABSTRACT

DNA mismatch repair deficiency (dMMR) is associated with the microsatellite instability (MSI) phenotype and leads to increased mutation load, which in turn may impact anti-tumor immune responses and treatment effectiveness. Various mutational signatures directly linked to dMMR have been described for primary cancers. To investigate which mutational signatures are associated with prognosis in gastric cancer, we performed a de novo extraction of mutational signatures in a cohort of 787 patients. We detected three dMMR-related signatures, one of which clearly discriminates tumors with MLH1 gene silencing caused by promoter hypermethylation (area under the curve = 98%). We then demonstrated that samples with the highest exposure of this signature share features related to better prognosis, encompassing clinical and molecular aspects and altered immune infiltrate composition. Overall, the assessment of the prognostic value and of the impact of modifications in MMR-related genes on shaping specific dMMR mutational signatures provides evidence that classification based on mutational signature exposure enables prognosis stratification.

2.
Sci Rep ; 9(1): 15751, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673055

ABSTRACT

The mutagenic repair of Cas9 generated breaks is thought to predominantly rely on non-homologous end-joining (NHEJ), leading to insertions and deletions within DNA that culminate in gene knock-out (KO). In this study, by taking focused as well as genome-wide approaches, we show that this pathway is dispensable for the repair of such lesions. Genetic ablation of NHEJ is fully compensated for by alternative end joining (alt-EJ), in a POLQ-dependent manner, resulting in a distinct repair signature with larger deletions that may be exploited for large-scale genome editing. Moreover, we show that cells deficient for both NHEJ and alt-EJ were still able to repair CRISPR-mediated DNA double-strand breaks, highlighting how little is yet known about the mechanisms of CRISPR-based genome editing.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , CRISPR-Associated Protein 9/metabolism , Cell Line , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Gene Knockout Techniques , HSP90 Heat-Shock Proteins/genetics , Humans , RNA, Guide, Kinetoplastida/metabolism , Ubiquitin-Protein Ligases/genetics
4.
Proc Natl Acad Sci U S A ; 116(9): 3774-3783, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808763

ABSTRACT

Establishing causal links between bacterial metabolites and human intestinal disease is a significant challenge. This study reveals the molecular basis of antibiotic-associated hemorrhagic colitis (AAHC) caused by intestinal resident Klebsiella oxytoca Colitogenic strains produce the nonribosomal peptides tilivalline and tilimycin. Here, we verify that these enterotoxins are present in the human intestine during active colitis and determine their concentrations in a murine disease model. Although both toxins share a pyrrolobenzodiazepine structure, they have distinct molecular targets. Tilimycin acts as a genotoxin. Its interaction with DNA activates damage repair mechanisms in cultured cells and causes DNA strand breakage and an increased lesion burden in cecal enterocytes of colonized mice. In contrast, tilivalline binds tubulin and stabilizes microtubules leading to mitotic arrest. To our knowledge, this activity is unique for microbiota-derived metabolites of the human intestine. The capacity of both toxins to induce apoptosis in intestinal epithelial cells-a hallmark feature of AAHC-by independent modes of action, strengthens our proposal that these metabolites act collectively in the pathogenicity of colitis.


Subject(s)
Enterocolitis, Pseudomembranous/genetics , Enterotoxins/metabolism , Host Microbial Interactions/genetics , Klebsiella oxytoca/genetics , Animals , Benzodiazepinones/metabolism , Benzodiazepinones/toxicity , DNA Damage/drug effects , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/pathology , Enterotoxins/biosynthesis , Epithelial Cells/microbiology , Epithelial Cells/pathology , Humans , Intestines/microbiology , Intestines/pathology , Klebsiella Infections/genetics , Klebsiella Infections/microbiology , Klebsiella oxytoca/metabolism , Klebsiella oxytoca/pathogenicity , Mice , Microtubules/drug effects , Oxyquinoline/analogs & derivatives , Oxyquinoline/metabolism , Oxyquinoline/toxicity , Peptides/metabolism , Peptides/toxicity
5.
Cell Rep ; 26(3): 555-563.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30650350

ABSTRACT

We provide a catalog for the effects of the human kinome on cell survival in response to DNA-damaging agents, covering all major DNA repair pathways. By treating 313 kinase-deficient cell lines with ten diverse DNA-damaging agents, including seven commonly used chemotherapeutics, we identified examples of vulnerability and resistance that are kinase specific. To investigate synthetic lethal interactions, we tested the response to carmustine for 25 cell lines by establishing a phenotypic fluorescence-activated cell sorting (FACS) assay designed to validate gene-drug interactions. We show apoptosis, cell cycle changes, and DNA damage and proliferation after alkylation- or crosslink-induced damage. In addition, we reconstitute the cellular sensitivity of DYRK4, EPHB6, MARK3, and PNCK as a proof of principle for our study. Furthermore, using global phosphoproteomics on cells lacking MARK3, we provide evidence for its role in the DNA damage response. Our data suggest that cancers with inactivating mutations in kinases, including MARK3, are particularly vulnerable to alkylating chemotherapeutic agents.


Subject(s)
DNA Damage/physiology , Humans , Signal Transduction
7.
Nat Commun ; 9(1): 2280, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891926

ABSTRACT

Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2). Thus, as compared to FA-defective cells alone, FA-deficient cells additionally lacking USP48 are less sensitive to genotoxic stress induced by ICL agents and display enhanced, BRCA1-dependent, clearance of DNA damage. Consequently, USP48 inactivation reduces chromosomal instability of FA-defective cells. Our results highlight a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for FA.


Subject(s)
DNA Repair/genetics , DNA Repair/physiology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , BRCA1 Protein/metabolism , CRISPR-Cas Systems , Cell Line , Chromosomal Instability , DNA Damage , Fanconi Anemia/therapy , Fanconi Anemia Complementation Group A Protein/deficiency , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group C Protein/deficiency , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group C Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/deficiency , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group G Protein/deficiency , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group G Protein/metabolism , Fanconi Anemia Complementation Group Proteins/deficiency , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Gene Knockout Techniques , Genetic Therapy , Histones/metabolism , Humans , Mutation , Rad51 Recombinase/metabolism , Ubiquitin-Specific Proteases/deficiency , Ubiquitination
8.
Nat Commun ; 8(1): 1238, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29089570

ABSTRACT

Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.


Subject(s)
DNA Repair/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia/genetics , RecQ Helicases/genetics , CRISPR-Cas Systems , Cell Line , DNA Damage , DNA Helicases/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , HEK293 Cells , Haploidy , Humans , Mutagenesis, Insertional , NAD(P)H Dehydrogenase (Quinone)/genetics
9.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149600

ABSTRACT

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Repair/radiation effects , Ultraviolet Rays , Acetohexamide/pharmacology , Cell Line, Tumor , DNA Glycosylases/biosynthesis , DNA Glycosylases/genetics , DNA Repair/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Humans , Male
10.
Cell Death Dis ; 7(10): e2419, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27735950

ABSTRACT

Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.


Subject(s)
Cell Cycle , Cell Transformation, Neoplastic/pathology , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Animals , Animals, Newborn , Apoptosis , Bone and Bones/pathology , Cell Cycle Checkpoints , Cell Differentiation , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic/metabolism , Extremities/pathology , Gene Expression Profiling , Gene Knockdown Techniques , Human Embryonic Stem Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Osteogenesis , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Transduction, Genetic
11.
Cell Rep ; 15(4): 893-908, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27149854

ABSTRACT

The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns. These changes gave rise to distinct early and late replication stress responses. Furthermore, our analysis revealed previously unknown targets of ATM and ATMIN downstream of replication stress. We demonstrate ATMIN-dependent phosphorylation of H2AX and of CRMP2, a protein previously implicated in Alzheimer's disease but not in the DNA damage response. Overall, our dataset provides a comprehensive resource for discovering the cellular responses to replication stress and, potentially, associated pathologies.

12.
PLoS Genet ; 11(11): e1005645, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26544571

ABSTRACT

Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.


Subject(s)
Cell Cycle Proteins/physiology , DNA Repair , Lymphocyte Activation/physiology , Nuclear Proteins/physiology , T-Lymphocytes/immunology , Transcription Factors/physiology , Animals , Colitis/immunology , DNA Damage , DNA-Binding Proteins , Immunophenotyping , Mice , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Recombination, Genetic , Spleen/cytology , Spleen/metabolism
13.
DNA Repair (Amst) ; 24: 122-130, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25262557

ABSTRACT

Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Replication , Intracellular Signaling Peptides and Proteins/metabolism , Transcription Factors/metabolism , Aphidicolin/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle/physiology , Chromosome Segregation , DNA Damage/drug effects , HeLa Cells/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Tumor Suppressor p53-Binding Protein 1
14.
Arch Biochem Biophys ; 534(1-2): 88-97, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23466243

ABSTRACT

Increasing global birth rate, coupled with the aging population surviving into their eighth decade has lead to increased incidence diseases, hitherto designated as rare. Brain related ischemia, at birth, or later in life, during, for example stroke, is increasing in global prevalence. Reactive microglia can contribute to neuronal damage as well as compromising transplantion. One potential treatment strategy is cellular therapy, using mesenchymal stem cells (hMSCs), which possess immunomodulatory and cell repair properties. For effective clinical therapy, mechanisms of action must be understood better. Here multicentre international laboratories assessed this question together investigating application of hMSCs neural involvement, with interest in the role of reactive microglia. Modulation by hMSCs in our in vivo and in vitro study shows they decrease markers of microglial activation (lower ED1 and Iba) and astrogliosis (lower GFAP) following transplantation in an ouabain-induced brain ischemia rat model and in organotypic hippocampal cultures. The anti-inflammatory effect in vitro was demonstrated to be CD200 ligand dependent with ligand expression shown to be increased by IL-4 stimulation. hMSC transplant reduced rat microglial STAT3 gene expression and reduced activation of Y705 phosphorylated STAT3, but STAT3 in the hMSCs themselves was elevated upon grafting. Surprisingly, activity was dependent on heterodimerisation with STAT1 activated by IL-4 and Oncostatin M. Our study paves the way to preclinical stages of a clinical trial with hMSC, and suggests a non-canonical JAK-STAT signaling of unphosphorylated STAT3 in immunomodulatory effects of hMSCs.


Subject(s)
Brain Injuries/immunology , Brain Ischemia/metabolism , Inflammation/immunology , Mesenchymal Stem Cells/metabolism , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Blotting, Western , Brain Injuries/metabolism , Brain Ischemia/immunology , CD40 Antigens/genetics , Coculture Techniques , Ectodysplasins/metabolism , Hippocampus/cytology , Hippocampus/immunology , Hippocampus/metabolism , Humans , Immunohistochemistry , Immunologic Factors/genetics , Immunologic Factors/immunology , Immunologic Factors/metabolism , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-4/immunology , Male , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Microglia/cytology , Microglia/immunology , Microglia/metabolism , Models, Animal , Phosphorylation , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Umbilical Cord/cytology
15.
Cells Tissues Organs ; 197(4): 249-68, 2013.
Article in English | MEDLINE | ID: mdl-23343517

ABSTRACT

Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.


Subject(s)
Embryonic Stem Cells/cytology , Leukemia Inhibitory Factor/metabolism , Myocytes, Cardiac/cytology , Animals , Cell Differentiation/physiology , Cell Line , Cytological Techniques/methods , Embryo, Mammalian , Embryonic Stem Cells/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Myocytes, Cardiac/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...