Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887096

ABSTRACT

Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449-/- mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449-/- mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449-/- mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449-/- cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.


Subject(s)
Aurora Kinase A/metabolism , Histone Deacetylase 6/metabolism , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Aurora Kinase A/genetics , Cilia/genetics , Epithelial Cells , Mice , MicroRNAs/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Tubulin/genetics
2.
Cell Death Differ ; 26(12): 2740-2757, 2019 12.
Article in English | MEDLINE | ID: mdl-31068677

ABSTRACT

Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.


Subject(s)
Cilia/physiology , MicroRNAs/metabolism , Tumor Protein p73/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Cilia/metabolism , Humans , Mice , MicroRNAs/genetics , Nuclear Proteins/genetics , Tumor Protein p73/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...