Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 609(7927): 597-604, 2022 09.
Article in English | MEDLINE | ID: mdl-35978196

ABSTRACT

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Subject(s)
Actomyosin , Biomolecular Condensates , Caenorhabditis elegans , Oocytes , Actin Cytoskeleton/metabolism , Actin-Related Protein 2/metabolism , Actin-Related Protein 3/metabolism , Actins/metabolism , Actomyosin/chemistry , Actomyosin/metabolism , Animals , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Emulsions/chemistry , Emulsions/metabolism , Oocytes/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
3.
Emerg Top Life Sci ; 4(3): 247-261, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33048111

ABSTRACT

The cellular cytoskeleton self-organizes by specific monomer-monomer interactions resulting in the polymerization of filaments. While we have long thought about the role of polymerization in cytoskeleton formation, we have only begun to consider the role of condensation in cytoskeletal organization. In this review, we highlight how the interplay between polymerization and condensation leads to the formation of the cytoskeleton.


Subject(s)
Cytoskeleton , Microtubules , Macromolecular Substances , Polymerization
4.
Nat Commun ; 11(1): 32, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31896744

ABSTRACT

Many intracellular pathogens, such as mammalian reovirus, mimic extracellular matrix motifs to specifically interact with the host membrane. Whether and how cell-matrix interactions influence virus particle uptake is unknown, as it is usually studied from the dorsal side. Here we show that the forces exerted at the ventral side of adherent cells during reovirus uptake exceed the binding strength of biotin-neutravidin anchoring viruses to a biofunctionalized substrate. Analysis of virus dissociation kinetics using the Bell model revealed mean forces higher than 30 pN per virus, preferentially applied in the cell periphery where close matrix contacts form. Utilizing 100 nm-sized nanoparticles decorated with integrin adhesion motifs, we demonstrate that the uptake forces scale with the adhesion energy, while actin/myosin inhibitions strongly reduce the uptake frequency, but not uptake kinetics. We hypothesize that particle adhesion and the push by the substrate provide the main driving forces for uptake.


Subject(s)
Host-Pathogen Interactions/physiology , Mammalian orthoreovirus 3/physiology , Metal Nanoparticles/chemistry , Actins/metabolism , Animals , Avidin/chemistry , Biotin/chemistry , Capsid/chemistry , Cells, Cultured , Fibroblasts/virology , Gold , HeLa Cells , Humans , Integrins/metabolism , Kinetics , Mammalian orthoreovirus 3/chemistry , Mammalian orthoreovirus 3/pathogenicity , Metal Nanoparticles/virology , Models, Theoretical , Myosins/metabolism , Rats , Virion/pathogenicity , Virion/physiology
5.
Bio Protoc ; 10(17): e3733, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-33659394

ABSTRACT

Motility of eukaryotic cells or pathogens within tissues is mediated by the turnover of specific interactions with other cells or with the extracellular matrix. Biophysical characterization of these ligand-receptor adhesions helps to unravel the molecular mechanisms driving migration. Traction force microscopy or optical tweezers are typically used to measure the cellular forces exerted by cells on a substrate. However, the spatial resolution of traction force microscopy is limited to ~2 µm and performing experiments with optical traps is very time-consuming. Here we present the production of biomimetic surfaces that enable specific cell adhesion via synthetic ligands and at the same time monitor the transmitted forces by using molecular tension sensors. The ligands were coupled to double-stranded DNA probes with defined force thresholds for DNA unzipping. Receptor-mediated forces in the pN range are thereby semi-quantitatively converted into fluorescence signals, which can be detected by standard fluorescence microscopy at the resolution limit (~0.2 µm). The modular design of the assay allows to vary the presented ligands and the mechanical strength of the DNA probes, which provides a number of possibilities to probe the adhesion of different eukaryotic cell types and pathogens and is exemplified here with osteosarcoma cells and Plasmodium berghei Sporozoites.

6.
ACS Infect Dis ; 4(11): 1585-1600, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30200751

ABSTRACT

Clathrin-mediated endocytosis (CME) is an important entry pathway for viruses. Here, we applied click chemistry to covalently immobilize reovirus on surfaces to study CME during early host-pathogen interactions. To uncouple chemical and physical properties of viruses and determine their impact on CME initiation, we used the same strategy to covalently immobilize nanoparticles of different sizes. Using fluorescence live microscopy and electron microscopy, we confirmed that clathrin recruitment depends on particle size and discovered that the maturation into clathrin-coated vesicles (CCVs) is independent from cargo internalization. Surprisingly, we found that the final size of CCVs appears to be imprinted on the clathrin coat at early stages of cargo-cell interactions. Our approach has allowed us to unravel novel aspects of early interactions between viruses and the clathrin machinery that influence late stages of CME and CCVs formation. This method can be easily and broadly applied to the field of nanotechnology, endocytosis, and virology.


Subject(s)
Clathrin-Coated Vesicles/physiology , Click Chemistry/methods , Endocytosis , Nanoparticles/metabolism , Reoviridae/physiology , Virus Internalization , Cell Line , Clathrin-Coated Vesicles/ultrastructure , Glass , Host Microbial Interactions , Microscopy, Electron , Microscopy, Fluorescence , Surface Properties , Virus Physiological Phenomena
7.
Nature ; 552(7684): 219-224, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29211717

ABSTRACT

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Subject(s)
Cell Membrane/metabolism , Extracellular Matrix/metabolism , Focal Adhesions , Integrins/metabolism , Ligands , Models, Biological , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Membrane/chemistry , Extracellular Matrix/chemistry , Gene Expression Regulation , Humans , Mice , Myosins/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Pliability , Transcription Factors/metabolism , Transcription, Genetic , YAP-Signaling Proteins
8.
Sci Rep ; 6: 23258, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987342

ABSTRACT

The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5ß1 and αvß3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5ß1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvß3 or α5ß1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of ß1 and ß3 integrins in directional migration.


Subject(s)
Fibroblasts/cytology , Fibronectins/metabolism , Integrin alpha5beta1/metabolism , Integrin alphaVbeta3/metabolism , Animals , Cell Adhesion , Cell Line , Cell Movement , Fourier Analysis , Humans , Microscopy, Atomic Force , Rats , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL
...