Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 62(Pt 9): 2090-2096, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22038999

ABSTRACT

Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD(T) (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD(T) grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH(37 °C) range 6.5-10.3 (optimum pH(37 °C) 8.0), and between 0.1 and 4.5 M Na(+) (optimum 0.9 M Na(+)). No growth was observed in the absence of supplemented Na(+). Strain JW/BP-GSL-QD(T) utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C(15 : 0) (39.1 %) and anteiso-C(15 : 0) (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD(T) was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD(T) the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA-DNA relatedness between strain JW/BP-GSL-QD(T) and A. jilinensis Y1(T) was 58 %. On the basis of physiological, chemotaxonomic and phylogenetic data, strain JW/BP-GSL-QD(T) represents a novel species of the genus Amphibacillus, for which the name Amphibacillus cookii sp. nov. is proposed. The type strain is JW/BP-GSL-QD(T) (= ATCC BAA-2118(T) = DSM 23721(T)).


Subject(s)
Bacillaceae/classification , Geologic Sediments/microbiology , Phylogeny , Bacillaceae/genetics , Bacillaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , Carbohydrates/analysis , DNA, Bacterial/genetics , Fatty Acids/analysis , Fermentation , Hydrogen-Ion Concentration , Molecular Sequence Data , Sequence Analysis, DNA , Spores, Bacterial/growth & development , Temperature , Utah
2.
Extremophiles ; 9(5): 375-83, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15965715

ABSTRACT

A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1-2 m below seafloor (mbsf) incubated at 60 degrees C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9 degrees C (Site 1227), one from 252 m below sea level with a temperature of 12 degrees C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52-76 degrees C with an optimum at around 68 degrees C for JW/IW-1228P and 43-76 degrees C with an optimum at around 64 degrees C for JW/YJL-1230-7/2. The pH(25C) range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9-8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C [corrected] mol% of the genomic DNA was 46.3 +/- 0.7% (n = 4) for Thermosediminibacter oceani [corrected] JW/IW-1228PT [corrected] and 45.2 +/- 0.7 (n = 6) for Thermosediminibacter litoriperuensis [corrected] JW/YJL-1230-7/2T [corrected] DNA-DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228P(T) is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646(T)=ATCC BAA-1034(T)), and JW/YJL-1230-7/2(T) into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647(T) =ATCC BAA-1035(T)).


Subject(s)
Thermoanaerobacter/classification , Thermoanaerobacter/isolation & purification , Anaerobiosis , DNA, Bacterial/genetics , Electron Transport , Fatty Acids/analysis , Fatty Acids/chemistry , Microscopy, Electron , Peru , Phospholipids/chemistry , Phospholipids/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Substrate Specificity , Thermoanaerobacter/cytology , Thermoanaerobacter/genetics
3.
Science ; 306(5705): 2216-21, 2004 Dec 24.
Article in English | MEDLINE | ID: mdl-15618510

ABSTRACT

Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.


Subject(s)
Bacteria/metabolism , Ecosystem , Geologic Sediments/microbiology , Bacteria/growth & development , Bacteria/isolation & purification , Carbon/metabolism , Colony Count, Microbial , Electron Transport , Iron/metabolism , Manganese/metabolism , Methane/metabolism , Nitrates/metabolism , Oxidants/metabolism , Oxidation-Reduction , Pacific Ocean , Peru , Photosynthesis , Seawater/chemistry , Sulfates/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL