Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6668): eadg2551, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37856589

ABSTRACT

The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate.

2.
Sci Rep ; 13(1): 7133, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130920

ABSTRACT

The variability and trend of ozone (O3) in the Upper troposphere and Lower Stratosphere (UTLS) over the Asian region needs to be accurately quantified. Ozone in the UTLS radiatively heats this region and cools the upper parts of the stratosphere. This results in an impact on relative humidity, static stability in the UTLS region and tropical tropopause temperature. A major challenge for understanding ozone chemistry in the UTLS is sparse observations and thus the representation of precursor gases in model emission inventories. Here, we evaluate ozonesonde measurements during August 2016 at Nainital, in the Himalayas, against ozone from multiple reanalyses and the ECHAM6-HAMMOZ model. We find that compared to measurements both reanalyses and ECHAM6-HAMMOZ control simulation overestimate ozone mixing ratios in the troposphere (20 ppb) and in the UTLS (55 ppb). We performed sensitivity simulations using the ECHAM6-HAMMOZ model for a 50% reduction in the emission of (1) NOx and (2) VOCs. The model simulations with NOX reduction agree better with the ozonesonde observations in the lower troposphere and in the UTLS. Thus, neither reanalyses nor ECHAM6-HAMMOZ results can reproduce observed O3 over the South Asian region. For a better representation of O3 in the ECHAM6-HAMMOZ model, NOX emission should be reduced by 50% in the emission inventory. A larger number of observations of ozone and precursor gases over the South Asian region would improve the assessment of ozone chemistry in models.

3.
Chemosphere ; 326: 138421, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36935062

ABSTRACT

Atmospheric aerosol optical, physical, and chemical properties play a fundamental role in the Earth's climate system. A better understanding of the processes involved in their formation, evolution, and interaction with radiation and the water cycle is critical. We report the analysis of atmospheric molecules/particles collected with a new sampling system that flew under regular weather balloons for the first time. The flight took place on January 18, 2022 from Reims (France). The samples were subsequently analyzed by high-resolution mass spectrometry (Orbitrap) to specifically infer hundreds of organic components present in 4 different layers from the troposphere to the stratosphere (up to 20 km). Additional measurements of O3, CO, and aerosol concentrations a few hours before this flight took place to contextualize the sampling. After separating common species found on each filter that might be common to atmospheric layers or residuals for contaminations, we found that each sample yields significant differences in the number and size of organic species detected that should reflect the unique composition of atmospheric layers. While tropospheric samples yield significantly oxidized and saturated components, with carbon numbers below 30 that might be explained by complex organics chemistry from local and distant source emissions, the upper tropospheric and stratospheric samples were associated with increased carbon numbers (C > 30), with a significantly reduced unsaturation number for the stratosphere, that might be induced by strong UV radiations. The multimodal distributions of carbon numbers in chemical formulas observed between 15 and 20 km suggest that oligomerization and growth of organic molecules may take place in aged air masses of tropical origin that are known to carry organic compounds even several km above the tropopause where their lifetime significantly increases. In addition, the presence of organics may also reflect the extended influence of wildfires smoke injected during the spring and summer in the NH hemisphere before the in situ observations and their long-lifetime in the upper troposphere and stratosphere.


Subject(s)
Atmosphere , Climate , Atmosphere/chemistry , Ultraviolet Rays , Seasons , Aerosols
5.
J Geophys Res Atmos ; 121(18): 11104-11118, 2016 09 27.
Article in English | MEDLINE | ID: mdl-29082118

ABSTRACT

Volcanic eruptions are important causes of natural variability in the climate system at all time scales. Assessments of the climate impact of volcanic eruptions by climate models almost universally assume that sulfate aerosol is the only radiatively active volcanic material. We report satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite after the eruption of Mount Kelud (Indonesia) on 13 February 2014 of volcanic materials in the lower stratosphere. Using these observations along with in situ measurements with the Compact Optical Backscatter AerosoL Detector (COBALD) backscatter sondes and optical particle counters (OPCs) made during a balloon field campaign in northern Australia, we find that fine ash particles with a radius below 0.3 µm likely represented between 20 and 28% of the total volcanic cloud aerosol optical depth 3 months after the eruption. A separation of 1.5-2 km between the ash and sulfate plumes is observed in the CALIOP extinction profiles as well as in the aerosol number concentration measurements of the OPC after 3 months. The settling velocity of fine ash with a radius of 0.3 µm in the tropical lower stratosphere is reduced by 50% due to the upward motion of the Brewer-Dobson circulation resulting a doubling of its lifetime. Three months after the eruption, we find a mean tropical clear-sky radiative forcing at the top of the atmosphere from the Kelud plume near -0.08 W/m2 after including the presence of ash; a value ~20% higher than if sulfate alone is considered. Thus, surface cooling following volcanic eruptions could be affected by the persistence of ash and should be considered in climate simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...