Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 4125, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750061

ABSTRACT

Skeletal modifications enable elegant and rapid access to various derivatives of a compound that would otherwise be difficult to prepare. They are therefore a powerful tool, especially in the synthesis of natural products or drug discovery, to explore different natural products or to improve the properties of a drug candidate starting from a common intermediate. Inspired by the biosynthesis of the cephalotane natural products, we report here a single-atom insertion into the framework of the benzenoid subfamily, providing access to the troponoid congeners - representing the reverse of the proposed biosynthesis (i.e., a contra-biosynthesis approach). Computational evaluation of our designed transformation prompted us to investigate a Büchner-Curtius-Schlotterbeck reaction of a p-quinol methylether, which ultimately results in the synthesis of harringtonolide in two steps from cephanolide A, which we had previously prepared. Additional computational studies reveal that unconventional selectivity outcomes are driven by the choice of a Lewis acid and the nucleophile, which should inform further developments of these types of reactions.


Subject(s)
Biological Products , Biological Products/chemistry , Biological Products/chemical synthesis , Molecular Structure
2.
Chem Sci ; 15(1): 213-219, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131093

ABSTRACT

The methoxime group has emerged as a versatile directing group for a variety of C-H functionalizations. Despite its importance as a powerful functional handle, conversion of methoximes to the parent ketone, which is often desired, usually requires harsh and functional group intolerant reaction conditions. Therefore, the application of methoximes and their subsequent conversion to the corresponding ketone in a late-stage context can be problematic. Here, we present an alternative set of conditions to achieve mild and functional group tolerant conversion of methoximes to the parent ketones using photoexcited nitroarenes. The utility of this methodology is showcased in its application in the total synthesis of cephanolide D. Furthermore, mechanistic insight into this transformation obtained using isotope labeling studies as well as the analysis of reaction byproducts is provided.

3.
J Am Chem Soc ; 145(48): 26086-26094, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37992133

ABSTRACT

Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.


Subject(s)
Peptides , Water , Water/chemistry , Peptides/chemistry , Organophosphates , Amino Acids/chemistry , Phosphates/chemistry , Esters
4.
Nat Rev Chem ; 7(11): 783-799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730908

ABSTRACT

The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.

5.
Chemistry ; 29(66): e202302400, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37646539

ABSTRACT

Studies into the biology of condensed phosphates almost exclusively cover linear polyphosphates. However, there is evidence for the presence of cyclic polyphosphates (metaphosphates) in organisms and for enzymatic digestion of branched phosphates (ultraphosphates) with alkaline phosphatase. Further research of non-linear condensed phosphates in biology would profit from interactome data of such molecules, however, their stability in biological media is limited. Here we present syntheses of modified, non-hydrolysable analogues of cyclic and branched condensed phosphates, called meta- and ultraphosphonates, and their application in a chemical proteomics approach using yeast cell extracts. We identify putative interactors with overlapping hits for structurally related capture compounds underlining the quality of our results. The datasets serve as starting point to study the biological relevance and functions of meta- and ultraphosphates. In addition, we examine the reactivity of meta- and ultraphosphonates with implications for their "hydrolysable" analogues: Efforts to increase the ring-sizes of meta- or cyclic ultraphosphonates revealed a strong preference to form trimetaphosphate-analogue structures by cyclization and/or ring-contraction. Using carbodiimides for condensation, the so far inaccessible dianhydro product of ultraphosphonate, corresponding to P4 O11 2- , was selectively obtained and then ring-opened by different nucleophiles yielding modified cyclic ultraphosphonates.


Subject(s)
Phosphates , Proteomics , Phosphates/chemistry , Polyphosphates/chemistry , Chemistry
6.
J Am Chem Soc ; 144(41): 19173-19185, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36198090

ABSTRACT

Detailed herein are our synthetic studies toward the preparation of the C18- and C19-benzenoid cephalotane-type norditerpenoids. Guided by chemical network analysis, the core structure of this natural product family was constructed in a concise manner using an iterative cross-coupling, followed by a formal inverse-electron-demand [4 + 2] cycloaddition. Initial efforts to functionalize an alkene group in the [4 + 2] cycloadduct using a Mukaiyama hydration and a subsequent olefination led to the complete C18-carbon framework. While effective, this approach proved lengthy and prompted the development of a direct alkene difunctionalization that relies on borocupration to advance the cycloadduct to the natural products. Late-stage peripheral C-H functionalization facilitated access to all of the known cephanolides in 6-10 steps as well as five recently isolated ceforalides in 8-13 steps.


Subject(s)
Biological Products , Diterpenes , Diterpenes/chemistry , Cycloaddition Reaction , Alkenes , Carbon/chemistry
7.
Angew Chem Int Ed Engl ; 61(1): e202113231, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34727582

ABSTRACT

Condensed phosphates are a critically important class of molecules in biochemistry. Non-natural analogues are important for various applications, such as single-molecule real-time DNA sequencing. Often, such analogues contain more than three phosphate units in their oligophosphate chain. Consequently, investigations into phosphate reactivity enabling new ways of phosphate functionalization and oligophosphorylation are essential. Here, we scrutinize the potential of phosphates to act as arynophiles, paving the way for follow-up oligophosphorylation reactions. The aryne phosphate reaction is a powerful tool to-depending on the perspective-(oligo)phosphorylate arenes or arylate (oligo-cyclo)phosphates. Based on Kobayashi-type o-silylaryltriflates, the aryne phosphate reaction enables rapid entry into a broad spectrum of arylated products, like monophosphates, diphosphates, phosphodiesters and polyphosphates. The synthetic potential of these new transformations is demonstrated by efficient syntheses of nucleotide analogues and an unprecedented one-flask octaphosphorylation.

8.
Chemistry ; 25(45): 10531-10545, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31059590

ABSTRACT

This minireview provides a survey of the various synthetic approaches to chiral ansa-metallocenes of Ti, Zr, and Hf containing a carbon-based bridge. The individual strategies to install substitution patterns at either the cyclopentadienyl framework or the bridging unit are highlighted with focus on the progress made towards a direct preparation of single complex stereoisomers. The review further includes the discussion of potential problems such as the formation of undesired diastereomers, the threat of racemization of enantiopure material, and synthetic challenges originating from the synthesis, purification, and isolation of the target complexes. The review has been written with the goal in mind to facilitate the design and synthesis of new chiral ansa-metallocene derivatives for emerging research areas in asymmetric catalysis and organometallic chemistry.

9.
Chemistry ; 24(62): 16532-16536, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30187606

ABSTRACT

Chiral ansa-metallocenes are privileged catalysts for a range of stereoselective transformations. Their synthesis, however, has remained a tremendous challenge, which has prevented a broad and systematic exploration for applications in synthesis and catalysis. A modular approach to such ansa-metallocenes that enables a facile modification of the ring substitution and the ligand bridge, as well as the introduction of various core metals, is described. The complexes were formed with good rac-selectivity and could be isolated with high purity. The strength of the approach was demonstrated by the synthesis of several new and previously known complexes, including a unique helical chiral ansa-metallocene. Using a chiral ligand, a moderate central-to-planar chirality transfer was observed.

10.
Org Lett ; 17(10): 2478-81, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25928360

ABSTRACT

A catalytic reductive C1-acylation of 3,4-dihydroisoquinolines is presented that gives direct access to 1,1-disubstituted tetrahydroisoquinolines. The reaction is a titanium(III)-catalyzed reductive umpolung process in which nitriles act as effective acylation agents. The method is highly chemo- and regioselective and is demonstrated in 20 examples. It is well-suited for the large-scale synthesis of functionalized tetrahydroisoquinoline products, which is exemplified in the form of a six-step synthesis of (±)-3-demethoxyerythratidinone.


Subject(s)
Indole Alkaloids/chemical synthesis , Tetrahydroisoquinolines/chemical synthesis , Titanium/chemistry , Catalysis , Indole Alkaloids/chemistry , Molecular Structure , Nitriles/chemistry , Stereoisomerism , Tetrahydroisoquinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL