Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Pharmacol ; 12: 785851, 2021.
Article in English | MEDLINE | ID: mdl-35342386

ABSTRACT

Understanding the pharmacokinetic/pharmacodynamic (PK/PD)-relationship of a drug candidate is key to determine effective, yet safe treatment regimens for patients. However, current testing strategies are inefficient in characterizing in vivo responses to fluctuating drug concentrations during multi-day treatment cycles. Methods based on animal models are resource-intensive and require time, while traditional in vitro cell-culturing methods usually do not provide temporally-resolved information on the effects of in vivo-like drug exposure scenarios. To address this issue, we developed a microfluidic system to 1) culture arrays of three-dimensional spheroids in vitro, to 2) apply specific dynamic drug exposure profiles, and to 3) in-situ analyze spheroid growth and the invoked drug effects in 3D by means of 2-photon microscopy at tissue and single-cell level. Spheroids of fluorescently-labeled T-47D breast cancer cells were monitored under perfusion-culture conditions at short time intervals over three days and exposed to either three 24 h-PK-cycles or a dose-matched constant concentration of the phosphatidylinositol 3-kinase inhibitor BYL719. While the overall efficacy of the two treatment regimens was similar, spheroids exposed to the PK profile displayed cycle-dependent oscillations between regression and regrowth. Spheroids treated with a constant BYL719 concentration regressed at a steady, albeit slower rate. At a single-cell level, the cell density in BYL719-treated spheroids oscillated in a concentration-dependent manner. Our system represents a versatile tool for in-depth preclinical characterization of PK/PD parameters, as it enables an evaluation of drug efficacy and/or toxicity under realistic exposure conditions.

2.
Cancer Res ; 78(21): 6257-6267, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30135191

ABSTRACT

Activation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here, we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high-dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high-dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with downregulation of Bcl-xL in vivo Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors.Significance: Pulsed high doses versus sustained low doses of the p53-MDM2 inhibitor HDM201 elicit a proapoptotic response from wild-type p53 cancer cells, offering guidance to current clinical trials with this and other drugs that exploit the activity of p53. Cancer Res; 78(21); 6257-67. ©2018 AACR.


Subject(s)
Antineoplastic Agents/administration & dosage , Imidazoles/administration & dosage , Neoplasms/drug therapy , Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Area Under Curve , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Screening Assays, Antitumor , Humans , Imidazoles/pharmacology , Kaplan-Meier Estimate , Maximum Tolerated Dose , Mice , Neoplasm Transplantation , Pyrimidines/pharmacology , Pyrroles/pharmacology , RNA, Small Interfering/metabolism , Time Factors , bcl-X Protein/metabolism
3.
Proc Natl Acad Sci U S A ; 114(12): 3151-3156, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265066

ABSTRACT

Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf-/- mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.


Subject(s)
DNA Transposable Elements , Drug Resistance, Neoplasm/genetics , Genetic Vectors/genetics , Mutagenesis, Insertional , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/genetics , Allografts , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Genetic Drift , Humans , Kaplan-Meier Estimate , Mice , Mice, Knockout , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/mortality , Neoplasms/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
5.
Mol Cancer Ther ; 14(10): 2249-59, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26206331

ABSTRACT

The tumor suppressor p53 is a key regulator of apoptosis and functions upstream in the apoptotic cascade by both indirectly and directly regulating Bcl-2 family proteins. In cells expressing wild-type (WT) p53, the HDM2 protein binds to p53 and blocks its activity. Inhibition of HDM2:p53 interaction activates p53 and causes apoptosis or cell-cycle arrest. Here, we investigated the ability of the novel HDM2 inhibitor CGM097 to potently and selectively kill WT p53-expressing AML cells. The antileukemic effects of CGM097 were studied using cell-based proliferation assays (human AML cell lines, primary AML patient cells, and normal bone marrow samples), apoptosis, and cell-cycle assays, ELISA, immunoblotting, and an AML patient-derived in vivo mouse model. CGM097 potently and selectively inhibited the proliferation of human AML cell lines and the majority of primary AML cells expressing WT p53, but not mutant p53, in a target-specific manner. Several patient samples that harbored mutant p53 were comparatively unresponsive to CGM097. Synergy was observed when CGM097 was combined with FLT3 inhibition against oncogenic FLT3-expressing cells cultured both in the absence as well as the presence of cytoprotective stromal-secreted cytokines, as well as when combined with MEK inhibition in cells with activated MAPK signaling. Finally, CGM097 was effective in reducing leukemia burden in vivo. These data suggest that CGM097 is a promising treatment for AML characterized as harboring WT p53 as a single agent, as well as in combination with other therapies targeting oncogene-activated pathways that drive AML.


Subject(s)
Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/drug effects , Benzothiazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , Gene Expression , Humans , Inhibitory Concentration 50 , Mice, Inbred NOD , Mice, SCID , Phenylurea Compounds/pharmacology , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , Tumor Burden/drug effects , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
6.
Elife ; 42015 May 12.
Article in English | MEDLINE | ID: mdl-25965177

ABSTRACT

Biomarkers for patient selection are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. In this study, we report the discovery of a novel patient selection strategy for the p53-HDM2 inhibitor NVP-CGM097, currently under evaluation in clinical trials. By intersecting high-throughput cell line sensitivity data with genomic data, we have identified a gene expression signature consisting of 13 up-regulated genes that predicts for sensitivity to NVP-CGM097 in both cell lines and in patient-derived tumor xenograft models. Interestingly, these 13 genes are known p53 downstream target genes, suggesting that the identified gene signature reflects the presence of at least a partially activated p53 pathway in NVP-CGM097-sensitive tumors. Together, our findings provide evidence for the use of this newly identified predictive gene signature to refine the selection of patients with wild-type p53 tumors and increase the likelihood of response to treatment with p53-HDM2 inhibitors, such as NVP-CGM097.


Subject(s)
Biomarkers/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Isoquinolines/pharmacology , Neoplasms/drug therapy , Patient Selection , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism
7.
Xenobiotica ; 45(2): 107-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25180976

ABSTRACT

1. 4-[2((1R,2R)-2-Hydroxycyclohexylamino)-benzothiazol-6-yloxyl]-pyridine-2-carboxylic acid methylamide (BLZ945) is a small molecule inhibitor of CSF-1R kinase activity within osteoclasts designed to prevent skeletal related events in metastatic disease. Key metabolites were enzymatically and structurally characterized to understand the metabolic fate of BLZ945 and pharmacological implications. The relative intrinsic clearances for metabolites were derived from in vitro studies using human hepatocytes, microsomes and phenotyped with recombinant P450 enzymes. 2. Formation of a pharmacologically active metabolite (M9) was observed in human hepatocytes. The M9 metabolite is a structural isomer (diastereomer) of BLZ945 and is about 4-fold less potent. This isomer was enzymatically formed via P450 oxidation of the BLZ945 hydroxyl group, followed by aldo-keto reduction to the alcohol (M9). 3. Two reaction phenotyping approaches based on fractional clearances were applied to BLZ945 using hepatocytes and liver microsomes. The fraction metabolized (fm) or contribution ratio was determined for each metabolic reaction type (oxidation, glucuronidation or isomerization) as well as for each metabolite. The results quantitatively illustrate contribution ratios of the involved enzymes and pathways, e.g. the isomerization to metabolite M9 accounted for 24% intrinsic clearance in human hepatocytes. In summary, contribution ratios for the Phase I and Phase II pathways can be determined in hepatocytes.


Subject(s)
Benzothiazoles/metabolism , Hepatocytes/enzymology , Microsomes, Liver/enzymology , Picolinic Acids/metabolism , Protein Kinase Inhibitors/metabolism , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cell Line , Cell Proliferation/drug effects , Cytochrome P-450 Enzyme System/metabolism , Humans , Metabolic Networks and Pathways , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction/drug effects
8.
Cancer Cell ; 26(1): 136-49, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25002028

ABSTRACT

Activation of the phosphoinositide 3-kinase (PI3K) pathway occurs frequently in breast cancer. However, clinical results of single-agent PI3K inhibitors have been modest to date. A combinatorial drug screen on multiple PIK3CA mutant cancers with decreased sensitivity to PI3K inhibitors revealed that combined CDK 4/6-PI3K inhibition synergistically reduces cell viability. Laboratory studies revealed that sensitive cancers suppress RB phosphorylation upon treatment with single-agent PI3K inhibitors but cancers with reduced sensitivity fail to do so. Similarly, patients' tumors that responded to the PI3K inhibitor BYL719 demonstrated suppression of pRB, while nonresponding tumors showed sustained or increased levels of pRB. Importantly, the combination of PI3K and CDK 4/6 inhibitors overcomes intrinsic and adaptive resistance leading to tumor regressions in PIK3CA mutant xenografts.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Mutation , Phosphoinositide-3 Kinase Inhibitors , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Class I Phosphatidylinositol 3-Kinases , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Drug Synergism , Female , Genetic Predisposition to Disease , Humans , MCF-7 Cells , Mice , Mice, Nude , Mice, SCID , Molecular Targeted Therapy , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Retinoblastoma Protein/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Treatment Outcome , Xenograft Model Antitumor Assays
9.
Mol Cancer Ther ; 13(5): 1117-29, 2014 May.
Article in English | MEDLINE | ID: mdl-24608574

ABSTRACT

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Thiazoles/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Female , Humans , Inhibitory Concentration 50 , Mice , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Rats , Thiazoles/pharmacokinetics , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem Lett ; 23(16): 4652-6, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23820386

ABSTRACT

PI3 kinases are a family of lipid kinases mediating numerous cell processes such as proliferation, migration and differentiation. The PI3 Kinase pathway is often de-regulated in cancer through PI3Kα overexpression, gene amplification, mutations and PTEN phosphatase deletion. PI3K inhibitors represent therefore an attractive therapeutic modality for cancer treatment. Herein we describe how the potency of a benzothiazole fragment hit was quickly improved based on structural information and how this early chemotype was further optimized through scaffold hopping. This effort led to the identification of a series of 2-acetamido-5-heteroaryl imidazopyridines showing potent in vitro activity against all class I PI3Ks and attractive pharmacokinetic properties.


Subject(s)
Azo Compounds/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cell Line, Tumor , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Humans , Imides/chemical synthesis , Imides/chemistry , Imides/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Pyridines/chemistry , Solubility , Structure-Activity Relationship
11.
Mol Cancer Ther ; 11(2): 317-28, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22188813

ABSTRACT

Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four class I PI3K isoforms in biochemical assays with at least 50-fold selectivity against other protein kinases. The compound is also active against the most common somatic PI3Kα mutations but does not significantly inhibit the related class III (Vps34) and class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentration-dependent and pathway-specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. NVP-BKM120 behaves synergistically when combined with either targeted agents such as MEK or HER2 inhibitors or with cytotoxic agents such as docetaxel or temozolomide. The pharmacological, biologic, and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is undergoing phase II clinical trials in patients with cancer.


Subject(s)
Aminopyridines/pharmacology , Morpholines/pharmacology , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Animals , Biological Availability , Blotting, Western , Cell Line, Tumor , Dose-Response Relationship, Drug , HCT116 Cells , HT29 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Morpholines/chemistry , Morpholines/pharmacokinetics , Mutation , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinase/chemistry , Phosphatidylinositol 3-Kinase/metabolism , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
12.
Int J Toxicol ; 30(3): 300-12, 2011 May.
Article in English | MEDLINE | ID: mdl-21653914

ABSTRACT

This article addresses the issue of miscorrelation between hepatic injury biomarkers and histopathological findings in the drug development context. Our studies indicate that the use of toxicogenomics can aid in the drug development decision-making process associated with such miscorrelated data. BLZ945 was developed as a Colony-Stimulating Factor 1 Receptor (CSF-1R) inhibitor. Treatment of BLZ945 in rats and monkeys increased serum alanine aminotransferase (ALT) and aspartate transaminase (AST). However, liver hypertrophy was the only histopathological liver finding in rats, and there was no change in the livers of monkeys. Longer treatment of BLZ945 in rats for 6 weeks caused up to 6-fold elevation of ALT, yet hepatocyte necrosis was not detected microscopically. Toxicogenomic profiling of liver samples demonstrated that the genes associated with early response to liver injury, apoptosis/necrosis, inflammation, oxidative stress, and metabolic enzymes were upregulated. Studies are ongoing to evaluate the mechanisms underlying BL945-induced ALT and AST elevations.


Subject(s)
Benzothiazoles/toxicity , Biomarkers/blood , Liver/drug effects , Pharmacogenetics , Picolinic Acids/toxicity , Toxicity Tests , Alanine Transaminase/blood , Alanine Transaminase/genetics , Animals , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/genetics , Down-Regulation/drug effects , Gene Expression Profiling , Humans , Liver/enzymology , Liver/pathology , Macaca fascicularis , RNA, Messenger/genetics , Rats , Rats, Wistar , Up-Regulation/drug effects
13.
ACS Med Chem Lett ; 2(10): 774-9, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-24900266

ABSTRACT

Phosphoinositide-3-kinases (PI3Ks) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein we describe the structure guided optimization of a series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines where the pharmacokinetic properties were improved by modulating the electronics of the 6-position heterocycle, and the overall druglike properties were fine-tuned further by modification of the 4-position substituent. The resulting 2,4-bismorpholino 6-heterocyclic pyrimidines are potent class I PI3K inhibitors showing mechanism modulation in PI3K dependent cell lines and in vivo efficacy in tumor xenograft models with PI3K pathway deregulation (A2780 ovarian and U87MG glioma). These efforts culminated in the discovery of 15 (NVP-BKM120), currently in Phase II clinical trials for the treatment of cancer.

14.
Bioorg Med Chem Lett ; 20(23): 6895-8, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21035331

ABSTRACT

PI3 Kinases are a family of lipid kinases mediating numerous cell processes such as proliferation, migration, and differentiation. The PI3 kinase pathway is often de-regulated in cancer through PI3Kα overexpression, gene amplification, mutations, and PTEN phosphatase deletion. PI3K inhibitors represent therefore an attractive therapeutic modality for cancer treatment. Herein we describe a novel series of PI3K inhibitors sharing a pyrimidine core and showing significant potency against class I PI3 kinases in the biochemical assay and in cells. The discovery, synthesis and SAR of this chemotype are described.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Morpholines/chemistry , Morpholines/pharmacology , Phosphorylation/drug effects , Pyrimidines/chemistry , Structure-Activity Relationship
15.
Bioorg Med Chem ; 18(19): 6977-86, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20817538

ABSTRACT

Although orphan drug applications required by the EMEA must include assessments of similarity to pre-existing products, these can be difficult to quantify. Here we illustrate a paradigm in comparing nilotinib to the prototype kinase inhibitor imatinib, and equate the degree of structural similarity to differences in properties. Nilotinib was discovered following re-engineering of imatinib, employing structural biology and medicinal chemistry strategies to optimise cellular potency and selectivity towards BCR-ABL1. Through evolving only to conserve these properties, this resulted in significant structural differences between nilotinib and imatinib, quantified by a Daylight-fingerprint-Tanimoto similarity coefficient of 0.6, with the meaning of this absolute measure being supported by an analysis of similarity distributions of similar drug-like molecules. This dissimilarity is reflected in the drugs having substantially different preclinical pharmacology and a lack of cross-intolerance in CML patients, which translates into nilotinib being an efficacious treatment for CML, with a favourable side-effect profile.


Subject(s)
Piperazines/chemistry , Piperazines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Benzamides , Cell Line , Cell Survival/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Models, Molecular , Molecular Structure , Protein-Tyrosine Kinases/antagonists & inhibitors , Structure-Activity Relationship
16.
J Med Chem ; 52(2): 278-92, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19113866

ABSTRACT

The inhibition of key receptor tyrosine kinases (RTKs) that are implicated in tumor vasculature formation and maintenance, as well as tumor progression and metastasis, has been a major focus in oncology research over the last several years. Many potent small molecule inhibitors of vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) kinases have been evaluated. More recently, compounds that act through the complex inhibition of multiple kinase targets have been reported and may exhibit improved clinical efficacy. We report herein a series of potent, orally efficacious 4-amino-3-benzimidazol-2-ylhydroquinolin-2-one analogues as inhibitors of VEGF, PDGF, and fibroblast growth factor (FGF) receptor tyrosine kinases. Compounds in this class, such as 5 (TKI258), are reversible ATP-competitive inhibitors of VEGFR-2, FGFR-1, and PDGFRbeta with IC(50) values <0.1 microM. On the basis of its favorable in vitro and in vivo properties, compound 5 was selected for clinical evaluation and is currently in phase I clinical trials.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinolones/chemistry , Quinolones/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Quinolones/pharmacokinetics , Structure-Activity Relationship
19.
Clin Cancer Res ; 11(14): 5281-91, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16033847

ABSTRACT

PURPOSE: Fms-like tyrosine kinase 3 (FLT3) encodes a receptor tyrosine kinase (RTK) for which activating mutations have been identified in a proportion of acute myelogenous leukemia (AML) patients and associated with poor clinical prognosis. Given the relevance of FLT3 mutations in AML, we investigated the activity of CHIR-258, an orally active, multitargeted small molecule, with potent activity against FLT3 kinase and class III, IV, and V RTKs involved in endothelial and tumor cell proliferation in AML models. EXPERIMENTAL DESIGN: CHIR-258 was tested on two human leukemic cell lines in vitro and in vivo with differing FLT3 mutational status [MV4;11 cells express FLT3 internal tandem duplications (ITD) versus RS4;11 cells with wild-type (WT) FLT3]. RESULTS: Antiproliferative activity of CHIR-258 against MV4;11 was approximately 24-fold greater compared with RS4;11, indicating more potent inhibition against cells with constitutively activated FLT3 ITD. Dose-dependent down modulation of receptor phosphorylation and downstream signaling [signal transducer and activator of transcription 5 (STAT5) and extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase] in MV4;11 cells with CHIR-258 confirmed the molecular mechanism of action. Target modulation of phospho-FLT3, phospho-STAT5, and phospho-ERK in MV4;11 tumors was achieved at biologically active doses of CHIR-258. Tumor regressions and eradication of AML cells from the bone marrow were shown in s.c. and bone marrow engraftment leukemic xenograft models. Tumor responses were characterized by decreased cellular proliferation and positive immunohistochemical staining for active caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting cell death was mediated in part via apoptosis. CONCLUSIONS: Our data indicate that CHIR-258 may be an effective therapy in FLT3-associated AML and warrants clinical trials.


Subject(s)
Benzimidazoles/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins/genetics , Quinolones/pharmacology , Receptor Protein-Tyrosine Kinases/genetics , Animals , Cell Proliferation , DNA Mutational Analysis , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/veterinary , Mice , Mice, SCID , Neoplasm Transplantation , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Tandem Repeat Sequences , Transplantation, Heterologous , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3
20.
Blood ; 105(7): 2941-8, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15598814

ABSTRACT

The t(4;14) translocation that occurs uniquely in a subset (15%) of patients with multiple myeloma (MM) results in the ectopic expression of the receptor tyrosine kinase (RTK), fibroblast growth factor receptor 3 (FGFR3). Inhibition of activated FGFR3 in MM cells induces apoptosis, validating FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these patients, who have a poor prognosis. We describe here the characterization of a novel, small-molecule inhibitor of class III, IV, and V RTKs, CHIR-258, as an inhibitor of FGFR3. CHIR-258 potently inhibits FGFR3 with an inhibitory concentration of 50% (IC50) of 5 nM in in vitro kinase assays and selectively inhibited the growth of B9 cells and human myeloma cell lines expressing wild-type (WT) or activated mutant FGFR3. In responsive cell lines, CHIR-258 induced cytostatic and cytotoxic effects. Importantly, addition of interleukin 6 (IL-6) or insulin growth factor 1 (IGF-1) or coculture on stroma did not confer resistance to CHIR-258. In primary myeloma cells from t(4;14) patients, CHIR-258 inhibited downstream extracellular signal-regulated kinase (ERK) 1/2 phosphorylation with an associated cytotoxic response. Finally, therapeutic efficacy of CHIR-258 was demonstrated in a xenograft mouse model of FGFR3 MM. These studies support the clinical evaluation of CHIR-258 in MM.


Subject(s)
Benzimidazoles/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinolones/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Cell Division/drug effects , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Dexamethasone/toxicity , Drug Interactions , Female , Glucocorticoids/toxicity , Humans , Insulin-Like Growth Factor I/pharmacology , Interleukin-6/pharmacology , Macrophage Colony-Stimulating Factor/pharmacology , Mice , Mice, Inbred Strains , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 3 , Receptors, Fibroblast Growth Factor/metabolism , Stromal Cells/cytology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...