Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(6): 16749-16755, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36550248

ABSTRACT

Redox-active substances in fine particulate matter (PM) contribute to inhalation health risks through their potential to generate reactive oxygen species in epithelial lung lining fluid (ELF). The ELF's air-liquid interface (ALI) can play an important role in the phase transfer and multi-phase reactions of redox-active PM constituents. We investigated the influence of interfacial processes and properties by scrubbing of coated nano-particles with simulated ELF in a nebulizing mist chamber. Weakly water-soluble redox-active organics abundant in ambient fine PM were reproducibly loaded into ELF via ALI mixing. The resulting oxidative potential (OP) of selected quinones and other PAH derivatives were found to exceed the OP resulting from bulk mixing of the same amounts of redox-active substances and ELF. Our results indicate that the OP of PM components depends not only on the PM substance properties but also on the ELF interface properties and uptake mechanisms. OP measurements based on bulk mixing of phases may not represent the effective OP in the human lung.


Subject(s)
Air Pollutants , Particulate Matter , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Reactive Oxygen Species , Oxidation-Reduction , Oxidative Stress
2.
Environ Sci Technol ; 54(22): 14224-14234, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33112146

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are common atmospheric pollutants and known to cause adverse health effects. Nitrated PAHs (NPAHs) are formed in combustion activities and by nitration of PAHs in the atmosphere and may be equally or more toxic, but their spatial and temporal distribution in the atmosphere is not well characterized. Using the global EMAC model with atmospheric chemistry and surface compartments coupled, we investigate the formation, abundance, and fate of two secondarily formed NPAHs, 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR). The default reactivity scenario, the model with the simplest interpretation of parameters from the literature, tends to overestimate both absolute concentrations and NPAH/PAH ratios at observational sites. Sensitivity scenarios indicate that NO2-dependent NPAH formation leads to better agreement between measured and predicted NPAH concentrations and that photodegradation is the most important loss process of 2-NFLT and 2-NPYR. The highest concentrations of 2-NFLT and 2-NPYR are found in regions with strong PAH emissions, but because of continued secondary formation from the PAH precursors, these two NPAHs are predicted to be spread across the globe.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Atmosphere , Environmental Monitoring , Fluorenes , Polycyclic Aromatic Hydrocarbons/analysis , Pyrenes
3.
Environ Int ; 139: 105634, 2020 06.
Article in English | MEDLINE | ID: mdl-32446144

ABSTRACT

BACKGROUND: Air pollution, which represents a major environmental risk to human health, comprises a complex mixture of compounds where only little is known about its specific toxicities. OBJECTIVES: This study examined the specific toxicities associated with ambient air pollutant mixtures with respect to gas/particle partitioning, particulate matter (PM) size, pollutant polarity and bioaccessibility from PM, and evaluated the contribution of PAHs and their oxygenated and nitrated derivatives (OPAHs, NPAHs). METHODS: Air samples (gas phase, PM10 and size-segregated PM), were collected at urban (in winter and summer) and background (winter) sites in the Czech Republic. The total and bioaccessible concentrations were addressed using organic solvent extraction and simulated lung fluid extraction, respectively. Organic extracts were also further fractionated according to polarity. Aryl hydrocarbon receptor (AhR)-mediated activity, anti-/estrogenicity, anti-/androgenicity, thyroid receptor (TR)-mediated activity and cytotoxicity for bronchial cells were determined by human cell-based in vitro bioassays. The contribution of studied compounds to observed effects was assessed by both modelling and reconstructing the mixtures. RESULTS: Significant effects were detected in the sub-micrometre size fraction of PM (estrogenicity, androgenicity, TR- and AhR-mediated activities) and in the gas phase (TR-mediated activity, antiandrogenicity). Compounds interacting with TR showed high bioaccessibility to simulated lung fluid. Relatively lower bioaccessibility was observed for estrogenicity and AhR-mediated activity. However, the toxicity testing of reconstructed mixtures revealed that the targeted pollutants are not the main contributors, except for urban PM air pollution in winter, where they accounted for 5-88% of several effects detected in the original complex environmental samples. DISCUSSION: Studied toxicities were mostly driven by polar compounds largely attributed to the easily inhalable PM1, which is of high relevance for human health risk assessment. Except of parent PAHs in some cases, the targeted compounds contributed to the detected effects mostly to a relatively low extent implying huge data gaps in terms of endocrine disruptive potencies of targeted substances and the significance of other polar compounds present in ambient air.


Subject(s)
Air Pollutants , Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Czech Republic , Environmental Monitoring , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity
4.
Environ Sci Technol ; 54(5): 2615-2625, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31950831

ABSTRACT

Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Σ10OPAHs were 10.0 ± 9.2 ng/m3 in winter and 3.5 ± 1.6 ng/m3 in summer. The gradient to the regional background site exceeded 1 order of magnitude. Σ18NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring , Europe , Humans , Nitrates , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL
...