Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38912673

ABSTRACT

We investigate roaming in the photodissociation of acetaldehyde (CH3CHO), providing insights into the contrasting roaming dynamics observed for this molecule compared to formaldehyde. We carry out trajectory studies for full-dimensional acetaldehyde, supplemented with an analysis of a two-degree-of-freedom restricted model and obtain evidence for two distinct roaming pathways. Trajectories exhibit roaming at both shorter (9-11.5 au) and larger (14.5-22.9 au) maximum CH3-HCO separations, characterized by differing amounts of HCO rotation. No roaming trajectories were found in the intervening gap region. The roaming dynamics near 14.5-22.9 au are well-reproduced by the restricted model and involve passage through a centrifugal barrier, analogous to formaldehyde roaming. However, the shorter-range 9-11.5 au roaming appears unique to acetaldehyde and is likely facilitated by repulsive interactions absent in the simplified models. Phase space analysis reveals that this additional roaming pathway is inaccessible in the reduced dimensionality system. The findings suggest that acetaldehyde's increased propensity for roaming compared to formaldehyde may arise from the presence of multiple distinct roaming mechanisms rather than solely the higher roaming fragment mass.

2.
Phys Rev E ; 108(2-1): 024211, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723690

ABSTRACT

We introduce and demonstrate the usage of the origin-fate map (OFM) as a tool for the detailed investigation of phase space transport in reactant-product-type systems. For these systems, which exhibit clearly defined start and end states, it is possible to build a comprehensive picture of the lobe dynamics by considering backward and forward integration of sets of initial conditions to index their origin and fate. We illustrate the method and its utility in the study of a two degrees of freedom caldera potential with four exits, demonstrating that the OFM not only recapitulates results from classical manifold theory but even provides more detailed information about complex lobe structures. The OFM allows the detection of dynamically significant transitions caused by the creation of new lobes and is also able to guide the prediction of the position of unstable periodic orbits (UPOs). Further, we compute the OFM on the periodic orbit dividing surface (PODS) associated with the transition state of a caldera entrance, which allows for a powerful analysis of reactive trajectories. The intersection of the manifolds corresponding to this UPO with other manifolds in the phase space results in the appearance of lobes on the PODS, which are directly classified by the OFM. This allows computations of branching ratios and the exploration of a fractal cascade of lobes as the caldera is stretched, which results in fluctuations in the branching ratio and chaotic selectivity. The OFM is found to be a simple and very useful tool with a vast range of descriptive and quantitative applications.

3.
Phys Rev E ; 108(1-1): 014206, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37583185

ABSTRACT

In a previous paper, we used a recent extension of the periodic-orbit dividing surfaces method to distinguish the reactive and nonreactive parts in a three-dimensional (3D) Caldera potential-energy surface. Furthermore, we detected the phenomenon of dynamical matching in a 3D Caldera potential-energy surface. This happened for a specific value of the radius r of the periodic orbit dividing surfaces (r=0.25). In this paper, we demonstrated that the chemical ratios of the number of reactive and nonreactive trajectories to the total number of trajectories converges for a range of the radius r of the periodic-orbit dividing surfaces. This is important not only for validating the previous paper and to confirm that the method can detect the phenomenon of dynamical matching independently of the chosen radius of the construction of the dividing surface but also for investigating the application of the method to other Hamiltonian models.

5.
Sci Rep ; 12(1): 3662, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35256639

ABSTRACT

The chaotic nature of ocean motion is a major challenge that hinders the discovery of spatio-temporal current routes that govern the transport of material. Certain material, such as oil spills, pose significant environmental threats and these are enhanced by the fact that they evolve in a chaotic sea, in a way which still nowadays is far from being systematically anticipated. Recently such an oil spill event has affected the Mediterranean coast of several Middle Eastern countries. No accidents were reported for these spills previous to their arrival at the coast, and therefore there was no hint of their origin. Modelling such an event, in which uncertainties are increased due to the lack of information on where and when the spills was produced, stretches available technologies to their limits, and requires the use of novel ideas that help to understand the essential features of oil and tar transport by ocean currents. In this regard Lagrangian Coherent Structures enable us to find order within ocean chaos and provide powerful insights into chaotic events and their relationships over different locations and times like the one addressed. Using the observed locations of the oil impacting the coast at specific times, we seek to determine its original location and the time it was released in the open ocean. We have determined both using a combination of earlier satellite observations and computational modelling of the time evolution. The observed agreement between modeled cases and satellite observations highlights the power of these ideas.

6.
Chaos ; 31(10): 103101, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34717316

ABSTRACT

We develop a machine learning framework that can be applied to data sets derived from the trajectories of Hamilton's equations. The goal is to learn the phase space structures that play the governing role for phase space transport relevant to particular applications. Our focus is on learning reactive islands in two degrees-of-freedom Hamiltonian systems. Reactive islands are constructed from the stable and unstable manifolds of unstable periodic orbits and play the role of quantifying transition dynamics. We show that the support vector machines are an appropriate machine learning framework for this purpose as it provides an approach for finding the boundaries between qualitatively distinct dynamical behaviors, which is in the spirit of the phase space transport framework. We show how our method allows us to find reactive islands directly in the sense that we do not have to first compute unstable periodic orbits and their stable and unstable manifolds. We apply our approach to the Hénon-Heiles Hamiltonian system, which is a benchmark system in the dynamical systems community. We discuss different sampling and learning approaches and their advantages and disadvantages.

7.
Phys Rev E ; 102(1-1): 012215, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795001

ABSTRACT

In this paper, we unveil the geometrical template of phase space structures that governs transport in a Hamiltonian system described by a potential energy surface with an entrance/exit channel and two wells separated by an index-1 saddle. For the analysis of the nonlinear dynamics mechanisms, we apply the method of Lagrangian descriptors, a trajectory-based scalar diagnostic tool that is capable of providing a detailed phase space tomography of the interplay between the invariant manifolds of the system. Our analysis reveals that the stable and unstable manifolds of the two families of unstable periodic orbits (UPOs) that exist in the regions of the wells are responsible for controlling access to the potential wells of the trajectories that enter the system through the entrance/exit channel. We demonstrate that the heteroclinic and homoclinic connections that arise in the system between the manifolds of the families of UPOs characterize the branching ratio, a relevant quantity used to measure product distributions in chemical reaction dynamics.

8.
Chaos ; 30(6): 063125, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32611094

ABSTRACT

In light of the rapid recent retreat of Arctic sea ice, the extreme weather events triggering the variability in Arctic ice cover has drawn increasing attention. A non-Gaussian α-stable Lévy process is thought to be an appropriate model to describe such extreme events. The maximal likely trajectory, based on the nonlocal Fokker-Planck equation, is applied to a nonautonomous Arctic sea ice system under α-stable Lévy noise. Two types of tipping times, the early-warning tipping time and the disaster-happening tipping time, are used to predict the critical time for the maximal likely transition from a perennially ice-covered state to a seasonally ice-free one and from a seasonally ice-free state to a perennially ice-free one, respectively. We find that the increased intensity of extreme events results in shorter warning time for sea ice melting and that an enhanced greenhouse effect will intensify this influence, making the arrival of warning time significantly earlier. Meanwhile, for the enhanced greenhouse effect, we discover that increased intensity and frequency of extreme events will advance the disaster-happening tipping time, in which an ice-free state is maintained throughout the year in the Arctic Ocean. Finally, we identify values of the Lévy index α and the noise intensity ϵ in the αϵ-space that can trigger a transition between the Arctic sea ice state. These results provide an effective theoretical framework for studying Arctic sea ice variations under the influence of extreme events.

9.
Phys Chem Chem Phys ; 22(32): 17890-17912, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32478352

ABSTRACT

In this article, we study the conformational isomerization in a solvent using a system-bath model where the phase space structures relevant for the reaction dynamics are revealed. These phase space structures are an integral part of understanding the reaction mechanism, that is the pathways that reactive trajectories undertake, in the presence of a solvent. Our approach involves detecting the analogs of the reactive islands first discussed in the works by Davis, Marston, De Leon, Berne and coauthors in the system-bath model using Lagrangian descriptors. We first present the structure of the reactive islands for the two degrees of freedom system modelling isomerization in the absence of the bath using direct computation of cylindrical (tube) manifolds and verify the Lagrangian descriptor method for detecting the reactive islands. The hierarchy of the reactive islands as indicated in the recent work by Patra and Keshavamurthy is shown to be related to the temporal features in committor probabilities. Next, we investigate the influence of the solvent on the reactive islands that we previously revealed for the two degrees of freedom system and discuss the use of the Lagrangian descriptor in the high-dimensional phase space of the system-bath model.

10.
Phys Rev E ; 102(6-1): 062203, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465985

ABSTRACT

We study the phase space objects that control the transport in a classical Hamiltonian model for a chemical reaction. This model has been proposed to study the yield of products in an ultracold exothermic reaction. In this model, two features determine the evolution of the system: a Van der Waals force and a short-range force associated with the many-body interactions. In the previous work, small random periodic changes in the direction of the momentum were used to simulate the short-range many-body interactions. In the present work, random Gaussian bumps have been added to the Van der Waals potential energy to simulate the short-range effects between the particles in the system. We compare both variants of the model and explain their differences and similarities from a phase space perspective. To visualize the structures that direct the dynamics in the phase space, we construct a natural Lagrangian descriptor for Hamiltonian systems based on the Maupertuis action S_{0}=∫_{q_{i}}^{q_{f}}p·dq.

11.
Phys Rev E ; 100(2-1): 022204, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574621

ABSTRACT

We present a method based on a Lagrangian descriptor for revealing the high-dimensional phase space structures that are of interest in nonlinear Hamiltonian systems with index-1 saddle. These phase space structures include a normally hyperbolic invariant manifold and its stable and unstable manifolds, which act as codimension-1 barriers to phase space transport. In this article, finding the invariant manifolds in high-dimensional phase space will constitute identifying coordinates on these invariant manifolds. The method of Lagrangian descriptor is demonstrated by applying to classical two and three degrees of freedom Hamiltonian systems which have implications for myriad applications in chemistry, engineering, and physics.

12.
J Chem Phys ; 149(9): 094109, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30195292

ABSTRACT

Chesnavich's model Hamiltonian for the reaction CH4+→ CH3+ + H is known to exhibit a range of interesting dynamical phenomena including roaming. The model system consists of two parts: a rigid, symmetric top representing the CH3+ ion and a free H atom. We study roaming in this model with focus on the evolution of geometrical features of the invariant manifolds in phase space that govern roaming under variations of the mass of the free atom m and a parameter a that couples radial and angular motion. In addition, we establish an upper bound on the prominence of roaming in Chesnavich's model. The bound highlights the intricacy of roaming as a type of dynamics on the verge between isomerisation and nonreactivity as it relies on generous access to the potential wells to allow reactions as well as a prominent area of high potential that aids sufficient transfer of energy between the degrees of freedom to prevent isomerisation.

13.
J Phys Chem A ; 122(42): 8354-8362, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30265802

ABSTRACT

In this paper, we further investigate the construction of a phase space dividing surface (DS) from a normally hyperbolic invariant manifold (NHIM) and the sampling procedure for the resulting dividing surface described in earlier work ( Wiggins , S. ; J. Chem. Phys. 2016 , 144 , 054107 ). Our discussion centers on the relationship between geometrical structures and dynamics for 2 and 3 degree of freedom (DoF) systems, specifically, the construction of a DS from a NHIM. We show that if the equation for the NHIM and associated DS is known (e.g., as obtained from Poincaré-Birkhoff normal form theory), then the numerical procedure described in Wiggins et al. ( J. Chem. Phys. 2016 , 144 , 054107 ) gives the same result as a sampling method based upon the explicit form of the NHIM. After describing the sampling procedure in a general context, it is applied to a quadratic Hamiltonian normal form near an index-one saddle where explicit formulas exist for both the NHIM and the DS. It is shown for both 2 and 3 DoF systems that a version of the general sampling procedure provides points on the analytically defined DS with the correct microcanonical density on the constant-energy DS. Excellent agreement is obtained between analytical and numerical averages of quadratic energy terms over the DS for a range of energies.

14.
J Phys Chem B ; 122(13): 3230-3241, 2018 04 05.
Article in English | MEDLINE | ID: mdl-28968092

ABSTRACT

Classical Hamiltonian trajectories are initiated at random points in phase space on a fixed energy shell of a model two degrees of freedom potential, consisting of two interacting minima in an otherwise flat energy plane of infinite extent. Below the energy of the plane, the dynamics are demonstrably chaotic. However, most of the work in this paper involves trajectories at a fixed energy that is 1% above that of the plane, in which regime the dynamics exhibit behavior characteristic of chaotic scattering. The trajectories are analyzed without reference to the potential, as if they had been generated in a typical direct molecular dynamics simulation. The questions addressed are whether one can recover useful information about the structures controlling the dynamics in phase space from the trajectory data alone, and whether, despite the at least partially chaotic nature of the dynamics, one can make statistically meaningful predictions of trajectory outcomes from initial conditions. It is found that key unstable periodic orbits, which can be identified on the analytical potential, appear by simple classification of the trajectories, and that the specific roles of these periodic orbits in controlling the dynamics are also readily discerned from the trajectory data alone. Two different approaches to predicting trajectory outcomes from initial conditions are evaluated, and it is shown that the more successful of them has ∼90% success. The results are compared with those from a simple neural network, which has higher predictive success (97%) but requires the information obtained from the "by-hand" analysis to achieve that level. Finally, the dynamics, which occur partly on the very flat region of the potential, show characteristics of the much-studied phenomenon called "roaming." On this potential, it is found that roaming trajectories are effectively "failed" periodic orbits and that angular momentum can be identified as a key controlling factor, despite the fact that it is not a strictly conserved quantity. It is also noteworthy that roaming on this potential occurs in the absence of a "roaming saddle," which has previously been hypothesized to be a necessary feature for roaming to occur.

15.
Annu Rev Phys Chem ; 68: 499-524, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28375689

ABSTRACT

In this review we discuss the recently described roaming mechanism for chemical reactions from the point of view of nonlinear dynamical systems in phase space. The recognition of the roaming phenomenon shows the need for further developments in our fundamental understanding of basic reaction dynamics, as is made clear by considering some questions that cut across most studies of roaming: Is the dynamics statistical? Can transition state theory be applied to estimate roaming reaction rates? What role do saddle points on the potential energy surface play in explaining the behavior of roaming trajectories? How do we construct a dividing surface that is appropriate for describing the transformation from reactants to products for roaming trajectories? How should we define the roaming region? We show that the phase space perspective on reaction dynamics provides the setting in which these questions can be properly framed and answered. We illustrate these ideas by considering photodissociation of formaldehyde. The phase-space formulation allows an unambiguous description of all possible reactive events, which also allows us to uncover the phase space mechanism that explains which trajectories roam, as opposed to evolving toward a different reactive event.

16.
J Bone Joint Surg Am ; 98(11): e45, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27252442

ABSTRACT

The Bundled Payments for Care Improvement (BPCI) initiative was begun in January 2013 by the U.S. Centers for Medicare & Medicaid Services (CMS) through its Innovation Center authority, which was created by the U.S. Patient Protection and Affordable Care Act (PPACA). The BPCI program seeks to improve health-care delivery and to ultimately reduce costs by allowing providers to enter into prenegotiated payment arrangements that include financial and performance accountability for a clinical episode in which a risk-and-reward calculus must be determined. BPCI is a contemporary 3-year experiment designed to test the applicability of episode-based payment models as a viable strategy to transform the CMS payment methodology while improving health outcomes. A summary of the 4 models being evaluated in the BPCI initiative is presented in addition to the awardee types and the number of awardees in each model. Data from one of the BPCI-designated pilot sites demonstrate that strategies do exist for successful implementation of an alternative payment model by keeping patients first while simultaneously improving coordination, alignment of care, and quality and reducing cost. Providers will need to embrace change and their areas of opportunity to gain a competitive advantage. Health-care providers, including orthopaedic surgeons, health-care professionals at post-acute care institutions, and product suppliers, all have a role in determining the strategies for success. Open dialogue between CMS and awardees should be encouraged to arrive at a solution that provides opportunity for gainsharing, as this program continues to gain traction and to evolve.


Subject(s)
Medicare/economics , Orthopedics/economics , Patient Protection and Affordable Care Act/economics , Reimbursement Mechanisms/economics , Humans , United States
17.
J Phys Chem A ; 120(27): 5145-54, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-26918375

ABSTRACT

The roaming mechanism in the reaction H + MgH →Mg + HH is investigated by classical and quantum dynamics employing an accurate ab initio three-dimensional ground electronic state potential energy surface. The reaction dynamics are explored by running trajectories initialized on a four-dimensional dividing surface anchored on three-dimensional normally hyperbolic invariant manifold associated with a family of unstable orbiting periodic orbits in the entrance channel of the reaction (H + MgH). By locating periodic orbits localized in the HMgH well or involving H orbiting around the MgH diatom, and following their continuation with the total energy, regions in phase space where reactive or nonreactive trajectories may be trapped are found. In this way roaming reaction pathways are deduced in phase space. Patterns similar to periodic orbits projected into configuration space are found for the quantum bound and resonance eigenstates. Roaming is attributed to the capture of the trajectories in the neighborhood of certain periodic orbits. The complex forming trajectories in the HMgH well can either return to the radical channel or "roam" to the MgHH minimum from where the molecule may react.

18.
J Chem Phys ; 144(5): 054107, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26851908

ABSTRACT

We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariant manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.

19.
J Phys Chem Lett ; 6(20): 4123-8, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26499774

ABSTRACT

We re-examine the prototypical roaming reaction--hydrogen atom roaming in formaldehyde decomposition--from a phase space perspective. Specifically, we address the question "why do trajectories roam, rather than dissociate through the radical channel?" We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well.

20.
J Phys Chem A ; 119(25): 6611-30, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26041494

ABSTRACT

Following previous work [J. Chem. Phys. 2013, 139, 154108] on a simple model of a reaction with a post-transition state valley ridge inflection point, we study the chemically important example of the electrocyclic cyclopropyl radical ring-opening reaction using direct dynamics and a reduced dimensional potential energy surface. The overall reaction requires con- or disrotation of the methylenes, but the initial stage of the ring-opening involves substantial internal rotation of only one methylene. The reaction path bifurcation is then associated with the relative sense of rotation of the second methylene. Clear deviations of reactive trajectories from the disrotatory intrinsic reaction coordinate (IRC) for the ring-opening are observed and the dynamical mechanism is discussed. Several features observed in the model system are found to be preserved in the more complex and higher dimensional ring-opening reaction. Most notable is the sensitivity of the reaction mechanism to the shape of the potential manifested as a Newtonian kinetic isotope effect upon deuterium substitution of one of the methylene hydrogens. Dependence of the product yield on frictional dissipation representing external environmental effects is also presented. The dynamics of the post-transition state cyclopropyl radical ring-opening are discussed in detail, and the use of low dimensional models as tools to analyze complicated organic reaction mechanisms is assessed in the context of this reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...