Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
2.
New Phytol ; 242(2): 524-543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413240

ABSTRACT

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Subject(s)
Brachypodium , Xylans , Animals , Humans , Xylans/metabolism , Lignin/metabolism , Brachypodium/metabolism , Cell Wall/metabolism
3.
Front Plant Sci ; 14: 1283093, 2023.
Article in English | MEDLINE | ID: mdl-38148867

ABSTRACT

Scots pine (Pinus sylvestris L.) is an evergreen coniferous tree with wide distribution and good growth performance in a range of habitats. Therefore, wood from P. sylvestris is produced in many managed forests and is frequently used in industry. Despite the importance of pine wood, we still do not fully understand its molecular structure what limits improvements in its processing. One of the basic features leading to variation in wood properties is the presence of earlywood and latewood which form annual growth rings. Here, we characterise biochemical traits that differentiate cell walls of earlywood and latewood in Scots pine. We discover that latewood is less recalcitrant to enzymatic digestion, with galactoglucomannan showing particularly pronounced difference in accessibility. Interestingly, characterisation of lignin reveals a higher proportion of coniferaldehydes in pine latewood and suggests the presence of a different linkage landscape in this wood type. With complementary analysis of wood polysaccharides this enabled us to propose the first detailed molecular model of earlywood and latewood and to conclude that the variation in lignin structure is likely the main determinant of differences in recalcitrance observed between the two wood types in pine. Our discoveries lay the foundation for improvements in industrial processes that use pine wood since we show clear pathways for increasing the efficiency of enzymatic processing of this renewable material. Our work will help guide future breeding of pine trees with desired timber properties and can help link molecular structure of softwood cell walls to function of the different types of xylem in conifers.

4.
Proc Natl Acad Sci U S A ; 120(41): e2302985120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782806

ABSTRACT

Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.


Subject(s)
Arabidopsis , Marchantia , Arabidopsis/genetics , Marchantia/genetics , Plant Leaves , Cell Wall , Polymers
5.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Article in English | MEDLINE | ID: mdl-37666966

ABSTRACT

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Subject(s)
Lignin , Wood , Biomass , Cellulose
6.
Cell Surf ; 9: 100103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36911339

ABSTRACT

Movement of cellulose synthase particles have so far been observed on the plant epidermis that are amenable to confocal imaging, yielding appreciable signal and resolution to observe small plasma membrane-localised particles. Presented here is a method, using airyscan confocal microscopy, that permits similar information to be obtained at depth within the developing protoxylem vessels of intact roots.

7.
Plant Cell ; 34(11): 4600-4622, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35929080

ABSTRACT

Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned ß-galactoglucomannan (ß-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of ß-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that ß-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis ß-GGM synthesis mutants show no obvious growth defects, genetic crosses between ß-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of ß-GGM and XyG in PCWs.


Subject(s)
Arabidopsis , Xylans , Arabidopsis/genetics , Cell Wall/chemistry , Cellulose
8.
Plants (Basel) ; 11(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35567113

ABSTRACT

Many research questions require the study of plant morphology, in particular cells and tissues, as close to their native context as possible and without physical deformations from some preparatory chemical reagents or sample drying. Cryo-scanning electron microscopy (cryoSEM) involves rapid freezing and maintenance of the sample at an ultra-low temperature for detailed surface imaging by a scanning electron beam. The data are useful for exploring tissue/cell morphogenesis, plus an additional cryofracture/cryoplaning/milling step gives information on air and water spaces as well as subcellular ultrastructure. This review gives an overview from sample preparation through to imaging and a detailed account of how this has been applied across diverse areas of plant research. Future directions and improvements to the technique are discussed.

9.
Cell Rep ; 36(11): 109715, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525367

ABSTRACT

Many species have cuticular striations that play a range of roles, from pollinator attraction to surface wettability. In Hibiscus trionum, the striations span multiple cells at the base of the petal to form a pattern that produces a type of iridescence. It is postulated, using theoretical models, that the pattern of striations could result from mechanical instabilities. By combining the application of mechanical stress with high-resolution imaging, we demonstrate that the cuticle buckles to create a striated pattern. Through mechanical modeling and cryo-SEM fractures, we show that the cuticle behaves like a bilayer system with a stiff film on a compliant substrate. The pattern of buckling aligns with the direction of the stress to create a larger-scale pattern. Our findings contribute to the understanding of the formation of tissue-wide patterns in living organisms.


Subject(s)
Hibiscus/chemistry , Light , Mechanical Phenomena/radiation effects , Compressive Strength , Cryoelectron Microscopy , Flowers/chemistry , Flowers/radiation effects , Flowers/ultrastructure , Hibiscus/growth & development , Hibiscus/radiation effects , Models, Theoretical , Seeds/chemistry , Seeds/growth & development , Stress, Mechanical
10.
BMC Plant Biol ; 21(1): 258, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34134628

ABSTRACT

BACKGROUND: Dionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic "woolly" farina. This contrasts with some related Primula which instead form a fine powder. Farina is formed by specialized cellular factories, a type of glandular trichome, but the precise composition of the fibres and how it exits the cell is poorly understood. Here, using a combination of cell biology (electron and light microscopy) and analytical chemical techniques, we present the principal chemical components of the wool and its mechanism of exit from the glandular trichome. RESULTS: We show the woolly farina consists of micron-diameter fibres formed from a mixture of flavone and substituted flavone derivatives. This contrasts with the powdery farina, consisting almost entirely of flavone. The woolly farina in D. tapetodes is extruded through specific sites at the surface of the trichome's glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle and forming a tight seal between the fibre and hole. The data is consistent with formation and thread elongation occurring from within the cell. CONCLUSIONS: Our results suggest the composition of the D. tapetodes farina dictates its formation as wool rather than powder, consistent with a model of thread integrity relying on intermolecular H-bonding. Glandular trichomes produce multiple wool fibres by concentrating and maintaining their extrusion at specific sites at the cell cortex of the head cell. As the wool is extensive across the plant, there may be associated selection pressures attributed to living at high altitudes.


Subject(s)
Flavones/analysis , Primulaceae/ultrastructure , Trichomes/ultrastructure , Microscopy , Microscopy, Electron , Primulaceae/chemistry
11.
Cell Surf ; 7: 100054, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34141960

ABSTRACT

A rapidly increasing body of literature suggests that many biological processes are driven by phase separation within polymer mixtures. Liquid-liquid phase separation can lead to the formation of membrane-less organelles, which are thought to play a wide variety of roles in cell metabolism, gene regulation or signaling. One of the characteristics of these systems is that they are poised at phase transition boundaries, which makes them perfectly suited to elicit robust cellular responses to often very small changes in the cell's "environment". Recent observations suggest that, also in the semi-solid environment of plant cell walls, phase separation not only plays a role in wall patterning, hydration and stress relaxation during growth, but also may provide a driving force for cell wall expansion. In this context, pectins, the major polyanionic polysaccharides in the walls of growing cells, appear to play a critical role. Here, we will discuss (i) our current understanding of the structure-function relationship of pectins, (ii) in vivo evidence that pectin modification can drive critical phase transitions in the cell wall, (iii) how such phase transitions may drive cell wall expansion in addition to turgor pressure and (iv) the periodic cellular processes that may control phase transitions underlying cell wall assembly and expansion.

12.
Science ; 371(6536): 1350-1355, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33632892

ABSTRACT

Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived from adenine, stimulate cell proliferation. Cytokinin signaling is initiated by membrane-associated histidine kinase receptors and transduced through a phosphorelay system. We show that in the Arabidopsis shoot apical meristem (SAM), cytokinin regulates cell division by promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in the cytoplasm. At the G2-to-M transition, rapid nuclear accumulation of MYB3R4-consistent with an associated transient peak in cytokinin concentration-feeds a positive feedback loop involving importins and initiates a transcriptional cascade that drives mitosis and cytokinesis. An engineered nuclear-restricted MYB3R4 mimics the cytokinin effects of enhanced cell proliferation and meristem growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Division , Cytokinins/metabolism , Trans-Activators/metabolism , Active Transport, Cell Nucleus , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Cycle Checkpoints , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Plant , Karyopherins/metabolism , Meristem/metabolism , Mitosis/genetics , Plant Growth Regulators/metabolism , Signal Transduction , Trans-Activators/genetics
13.
Dev Cell ; 56(4): 540-556.e8, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33621494

ABSTRACT

We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform. Using computational models, we found that the literature-based molecular network only explained a minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step toward mechanistic models of flower development.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Flowers/growth & development , Flowers/genetics , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Body Patterning/genetics , Cell Lineage/genetics , Flowers/anatomy & histology , Flowers/cytology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Plant , Morphogenesis/genetics , Mutation/genetics
14.
iScience ; 23(12): 101862, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33336161

ABSTRACT

The plant cell wall, a form of the extracellular matrix, is a complex and dynamic network of polymers mediating a plethora of physiological functions. How polysaccharides assemble into a coherent and heterogeneous matrix remains mostly undefined. Further progress requires improved molecular-level visualization methods that would gain a deeper understanding of the cell wall nanoarchitecture. dSTORM, a type of super-resolution microscopy, permits quantitative nanoimaging of the cell wall. However, due to the lack of single-cell model systems and the requirement of tissue-level imaging, its use in plant science is almost absent. Here we overcome these limitations; we compare two methods to achieve three-dimensional dSTORM and identify optimal photoswitching dyes for tissue-level multicolor nanoscopy. Combining dSTORM with spatial statistics, we reveal and characterize the ultrastructure of three major polysaccharides, callose, mannan, and cellulose, in the plant cell wall precursor and provide evidence for cellulose structural re-organization related to callose content.

15.
Science ; 367(6481): 1003-1007, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32108107

ABSTRACT

The process by which plant cells expand and gain shape has presented a challenge for researchers. Current models propose that these processes are driven by turgor pressure acting on the cell wall. Using nanoimaging, we show that the cell wall contains pectin nanofilaments that possess an intrinsic expansion capacity. Additionally, we use growth models containing such structures to show that a complex plant cell shape can derive from chemically induced local and polarized expansion of the pectin nanofilaments without turgor-driven growth. Thus, the plant cell wall, outside of the cell itself, is an active participant in shaping plant cells. Extracellular matrix function may similarly guide cell shape in other kingdoms, including Animalia.


Subject(s)
Arabidopsis/embryology , Pectins/metabolism , Pectins/ultrastructure , Plant Cells , Plant Development , Plant Epidermis/cytology , Arabidopsis/cytology , Cell Shape , Cell Wall/metabolism , Cotyledon/cytology , Cotyledon/embryology , Methylation , Molecular Imaging
16.
Bio Protoc ; 10(19): e3783, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33659438

ABSTRACT

The plant cell wall (PCW) is a pecto-cellulosic extracellular matrix that envelopes the plant cell. By integrating extra-and intra-cellular cues, PCW mediates a plethora of essential physiological functions. Notably, it permits controlled and oriented tissue growth by tuning its local mechano-chemical properties. To refine our knowledge of these essential properties of PCW, we need an appropriate tool for the accurate observation of the native (in muro) structure of the cell wall components. The label-free techniques, such as AFM, EM, FTIR, and Raman microscopy, are used; however, they either do not have the chemical or spatial resolution. Immunolabeling with electron microscopy allows observation of the cell wall nanostructure, however, it is mostly limited to single and, less frequently, multiple labeling. Immunohistochemistry (IHC) is a versatile tool to analyze the distribution and localization of multiple biomolecules in the tissue. The subcellular resolution of chemical changes in the cell wall component can be observed with standard diffraction-limited optical microscopy. Furthermore, novel chemical imaging tools such as multicolor 3D dSTORM (Three-dimensional, direct Stochastic Optical Reconstruction Microscopy) nanoscopy makes it possible to resolve the native structure of the cell wall polymers with nanometer precision and in three dimensions. Here we present a protocol for preparing multi-target immunostaining of the PCW components taking as example Arabidopsis thaliana, Star fruit (Averrhoa carambola), and Maize thin tissue sections. This protocol is compatible with the standard confocal microscope, dSTORM nanoscope, and can also be implemented for other optical nanoscopy such as STED (Stimulated Emission Depletion Microscopy). The protocol can be adapted for any other subcellular compartments, plasma membrane, cytoplasmic, and intracellular organelles.

17.
Plant Physiol ; 182(1): 147-158, 2020 01.
Article in English | MEDLINE | ID: mdl-31722974

ABSTRACT

In addition to transcriptional regulation, gene expression is further modulated through mRNA spatiotemporal distribution, by RNA movement between cells, and by RNA localization within cells. Here, we have adapted RNA fluorescence in situ hybridization (FISH) to explore RNA localization in Arabidopsis (Arabidopsis thaliana). We show that RNA FISH on sectioned material can be applied to investigate the tissue and subcellular localization of meristem and flower development genes, cell cycle transcripts, and plant long noncoding RNAs. We also developed double RNA FISH to dissect the coexpression of different mRNAs at the shoot apex and nuclear-cytoplasmic separation of cell cycle gene transcripts in dividing cells. By coupling RNA FISH with fluorescence immunocytochemistry, we further demonstrate that a gene's mRNA and protein may be simultaneously detected, for example revealing uniform distribution of PIN-FORMED1 (PIN1) mRNA and polar localization of PIN1 protein in the same cells. Therefore, our method enables the visualization of gene expression at both transcriptional and translational levels with subcellular spatial resolution, opening up the possibility of systematically tracking the dynamics of RNA molecules and their cognate proteins in plant cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , In Situ Hybridization, Fluorescence/methods , RNA, Nuclear/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/genetics , Meristem/genetics , Meristem/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , RNA, Nuclear/genetics
18.
Front Plant Sci ; 10: 1398, 2019.
Article in English | MEDLINE | ID: mdl-31708959

ABSTRACT

The woody secondary cell walls of plants are the largest repository of renewable carbon biopolymers on the planet. These walls are made principally from cellulose and hemicelluloses and are impregnated with lignin. Despite their importance as the main load bearing structure for plant growth, as well as their industrial importance as both a material and energy source, the precise arrangement of these constituents within the cell wall is not yet fully understood. We have adapted low temperature scanning electron microscopy (cryo-SEM) for imaging the nanoscale architecture of angiosperm and gymnosperm cell walls in their native hydrated state. Our work confirms that cell wall macrofibrils, cylindrical structures with a diameter exceeding 10 nm, are a common feature of the native hardwood and softwood samples. We have observed these same structures in Arabidopsis thaliana secondary cell walls, enabling macrofibrils to be compared between mutant lines that are perturbed in cellulose, hemicellulose, and lignin formation. Our analysis indicates that the macrofibrils in Arabidopsis cell walls are dependent upon the proper biosynthesis, or composed, of cellulose, xylan, and lignin. This study establishes that cryo-SEM is a useful additional approach for investigating the native nanoscale architecture and composition of hardwood and softwood secondary cell walls and demonstrates the applicability of Arabidopsis genetic resources to relate fibril structure with wall composition and biosynthesis.

19.
Micron ; 126: 102733, 2019 11.
Article in English | MEDLINE | ID: mdl-31479919

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) is a useful tool for discriminating fluorescent moieties, based on photon lifetimes, that cannot be otherwise resolved by looking solely at their excitation/emission characteristics. We present a method for correlative FLIM-confocal-Raman imaging and its application to lignin composition studies in the woody stems of the plant model Arabidopsis thaliana. Lignin is autofluorescent and exhibits characteristic fluorescence lifetimes attributed to its composition. Its composition can be further resolved by Raman microscopy to multiple peaks that represent different components. A lignin biosynthetic mutant is found to have a marked difference in fluorescence lifetime and corresponds to a change in composition as demonstrated by the Raman output.

20.
Mol Cell ; 68(6): 1108-1119.e3, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29225038

ABSTRACT

In eukaryotes, most RNA molecules are exported into the cytoplasm after transcription. Long noncoding RNAs (lncRNAs) reside and function primarily inside the nucleus, but nuclear localization of mRNAs has been considered rare in both animals and plants. Here we show that Arabidopsis anaphase-promoting complex/cyclosome (APC/C) coactivator genes CDC20 and CCS52B (CDH1 ortholog) are co-expressed with their target cyclin B genes (CYCBs) during mitosis. CYCB transcripts can be exported and translated; however, CDC20 and CCS52B mRNAs are confined to the nucleus at prophase, and the cognate proteins are not translated until the redistribution of the mRNAs to the cytoplasm after nuclear envelope breakdown (NEBD) at prometaphase. The 5' untranslated region (UTR) plays dual roles in CDC20 mRNA nuclear localization and translation. Mitotic accumulation of CDC20 and CCS52B transcripts enables the timely and rapid activation of APC/C, while the nuclear sequestration of these transcripts at prophase appears to protect cyclins from precocious degradation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cdc20 Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle , Cell Nucleus/genetics , Plant Stems/metabolism , RNA, Messenger/metabolism , Anaphase-Promoting Complex-Cyclosome , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cdc20 Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Plant Stems/cytology , Plant Stems/genetics , RNA, Messenger/genetics , Stem Cell Niche
SELECTION OF CITATIONS
SEARCH DETAIL