Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37895435

ABSTRACT

Microscopic symbionts represent crucial links in biological communities. However, they present technical challenges in high-throughput sequencing (HTS) studies due to their small size and minimal high-quality DNA yields, hindering our understanding of host-symbiont coevolution at microevolutionary and macroevolutionary scales. One approach to overcome those barriers is to pool multiple individuals from the same infrapopulation (i.e., individual host) and sequence them together (Pool-Seq), but individual-level information is then compromised. To simultaneously address both issues (i.e., minimal DNA yields and loss of individual-level information), we implemented a strategic Pool-Seq approach to assess variation in sequencing performance and categorize genetic diversity (single nucleotide polymorphisms (SNPs)) at both the individual-level and infrapopulation-level for microscopic feather mites. To do so, we collected feathers harboring mites (Proctophyllodidae: Amerodectes protonotaria) from four individual Prothonotary Warblers (Parulidae: Protonotaria citrea). From each of the four hosts (i.e., four mite infrapopulations), we conducted whole-genome sequencing on three extraction pools consisting of different numbers of mites (1 mite, 5 mites, and 20 mites). We found that samples containing pools of multiple mites had more sequencing reads map to the feather mite reference genome than did the samples containing only a single mite. Mite infrapopulations were primarily genetically structured by their associated individual hosts (not pool size) and the majority of SNPs were shared by all pools within an infrapopulation. Together, these results suggest that the patterns observed are driven by evolutionary processes occurring at the infrapopulation level and are not technical signals due to pool size. In total, despite the challenges presented by microscopic symbionts in HTS studies, this work highlights the value of both individual-level and infrapopulation-level sequencing toward our understanding of host-symbiont coevolution at multiple evolutionary scales.

2.
Mol Ecol ; 32(19): 5260-5275, 2023 10.
Article in English | MEDLINE | ID: mdl-37635403

ABSTRACT

Researchers often examine symbiont host specificity as a species-level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist-generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population-level processes, stating that single-host symbionts (specialists) exhibit stronger population genetic structure than multi-host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities, Amerodectes protonotaria (a host specialist of Protonotaria citrea) and A. ischyros (a host generalist of 17 parulid species). We used a pooled-sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission - during the nonbreeding season of migratory hosts - as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.


Subject(s)
Mites , Passeriformes , Animals , Mites/genetics , Passeriformes/genetics , Biological Evolution , Host Specificity , Geography , Symbiosis/genetics
3.
PLoS One ; 18(7): e0287590, 2023.
Article in English | MEDLINE | ID: mdl-37418376

ABSTRACT

Phytophthora sojae is a soil-borne oomycete and the causal agent of Phytophthora root and stem rot (PRR) in soybean (Glycine max [L.] Merrill). Yield losses attributed to P. sojae are devastating in disease-conducive environments, with global estimates surpassing 1.1 million tonnes annually. Historically, management of PRR has entailed host genetic resistance (both vertical and horizontal) complemented by disease-suppressive cultural practices (e.g., oomicide application). However, the vast expansion of complex and/or diverse P. sojae pathotypes necessitates developing novel technologies to attenuate PRR in field environments. Therefore, the objective of the present study was to couple high-throughput sequencing data and deep learning to elucidate molecular features in soybean following infection by P. sojae. In doing so, we generated transcriptomes to identify differentially expressed genes (DEGs) during compatible and incompatible interactions with P. sojae and a mock inoculation. The expression data were then used to select two defense-related transcription factors (TFs) belonging to WRKY and RAV families. DNA Affinity Purification and sequencing (DAP-seq) data were obtained for each TF, providing putative DNA binding sites in the soybean genome. These bound sites were used to train Deep Neural Networks with convolutional and recurrent layers to predict new target sites of WRKY and RAV family members in the DEG set. Moreover, we leveraged publicly available Arabidopsis (Arabidopsis thaliana) DAP-seq data for five TF families enriched in our transcriptome analysis to train similar models. These Arabidopsis data-based models were used for cross-species TF binding site prediction on soybean. Finally, we created a gene regulatory network depicting TF-target gene interactions that orchestrate an immune response against P. sojae. Information herein provides novel insight into molecular plant-pathogen interaction and may prove useful in developing soybean cultivars with more durable resistance to P. sojae.


Subject(s)
Arabidopsis , Phytophthora , Humans , Disease Resistance/genetics , Glycine max/metabolism , Phytophthora/genetics , Arabidopsis/genetics , Gene Regulatory Networks , Plant Diseases/genetics
4.
J Exp Bot ; 74(17): 5294-5306, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37260405

ABSTRACT

Genetic underpinnings of host-pathogen interactions in the parasitic plant Striga hermonthica, a root parasitic plant that ravages cereals in sub-Saharan Africa, are unclear. We performed a comparative transcriptome study on five genotypes of sorghum exhibiting diverse resistance responses to S. hermonthica using weighted gene co-expression network analysis (WGCNA). We found that S. hermonthica elicits both basal and effector-triggered immunity-like a bona fide pathogen. The resistance response was genotype specific. Some resistance responses followed the salicylic acid-dependent signaling pathway for systemic acquired resistance characterized by cell wall reinforcements, lignification, and callose deposition, while in others the WRKY-dependent signaling pathway was activated, leading to a hypersensitive response. In some genotypes, both modes of resistance were activated, while in others either mode dominated the resistance response. Cell wall-based resistance was common to all sorghum genotypes but strongest in IS2814, while a hypersensitive response was specific to N13, IS9830, and IS41724. WGCNA further allowed for pinpointing of S. hermonthica resistance causative genes in sorghum, including glucan synthase-like 10 gene, a pathogenesis-related thaumatin-like family gene, and a phosphoinositide phosphatase gene. Such candidate genes will form a good basis for subsequent functional validation and possibly future resistance breeding.


Subject(s)
Sorghum , Striga , Sorghum/genetics , Sorghum/metabolism , Striga/genetics , Edible Grain , Plant Breeding , Africa South of the Sahara
5.
Syst Biol ; 72(4): 802-819, 2023 08 07.
Article in English | MEDLINE | ID: mdl-36960591

ABSTRACT

A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.].


Subject(s)
Host Specificity , Mites , Animals , Phylogeny , Mites/genetics , Biological Evolution , Symbiosis
6.
Data Brief ; 46: 108835, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36591378

ABSTRACT

Feather mites are ubiquitous, permanent, obligate ectosymbionts of avian hosts and are a valuable natural system for studying host-symbiont evolutionary and ecological dynamics at multiple levels of biological organization. However, a lack of a sequenced genome impedes molecular studies using this system. Therefore, we present the first draft genome of a symbiotic feather mite, Amerodectes protonotaria Hernandes 2018. The genome sequence data presented here were derived from an individual female mite that was collected in the field from Protonotaria citrea, its only known host species. Short read sequence data were obtained using an Illumina NovaSeq 6000 platform. From these data, we assembled a 59,665,063 bp draft genome consisting of 2,399 contigs. Raw short reads and the assembled genome sequence are available at the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive (SRA) under BioProject PRJNA884722. The data presented here are beneficial for future research on the biology and evolution of closely related mites and the genomics of host-symbiont interactions.

7.
PLoS One ; 16(4): e0250284, 2021.
Article in English | MEDLINE | ID: mdl-33901201

ABSTRACT

Water deficit limits plant growth and development, resulting in quality loss of horticultural crops. However, there is limited information on gene regulation and signaling pathways related to water deficit stress response at multiple time points. The objective of this research was to investigate global gene expression patterns under water deficit stress to provide an insight into how petunia (Petunia ×hybrida 'Mitchell Diploid') responded in the process of stress. Nine-week-old petunias were irrigated daily or placed under water stress by withholding water. Stressed plants reduced stomatal conductance after five days of water deficit, indicating they perceived stress and initiated stress response mechanisms. To analyze transcriptomic changes at the early stage of water deficit, leaf tissue samples were collected 1, 3, and 5 days after water was withheld for RNA sequencing. Under water deficit stress, 154, 3611, and 980 genes were upregulated and 41, 2806, and 253 genes were downregulated on day 1, 3, and 5, respectively. Gene Ontology analysis revealed that redox homeostasis processes through sulfur and glutathione metabolism pathways, and hormone signal transduction, especially abscisic acid and ethylene, were enriched under water deficit stress. Thirty-four transcription factor families were identified, including members of AP2/ERF, NAC, MYB-related, C2H2, and bZIP families, and TFs in AP2/ERF family was the most abundant in petunia. Interestingly, only one member of GRFs was upregulated on day 1, while most of TFs were differentially expressed on day 3 and/or 5. The transcriptome data from this research will provide valuable molecular resources for understanding the early stages of water stress-responsive networks as well as engineering petunia with enhanced water stress tolerance.


Subject(s)
Dehydration/genetics , Gene Expression Regulation, Plant , Petunia/genetics , RNA-Seq/methods , Stress, Physiological/genetics , Transcriptome , Cluster Analysis , Down-Regulation , Gene Ontology , Homeostasis/genetics , Petunia/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
8.
Plants (Basel) ; 9(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171842

ABSTRACT

Stress-induced microspore embryogenesis is a widely employed method to achieve homozygosity in plant breeding programs. However, the molecular mechanisms that govern gametophyte de- and redifferentiation are understood poorly. In this study, RNA-Seq was used to evaluate global changes across the microspore transcriptome of soybean (Glycine max [L.] Merrill) as a consequence of pretreatment low-temperature stress. Expression analysis revealed more than 20,000 differentially expressed genes between treated and control microspore populations. Functional enrichment illustrated that many of these genes (e.g., those encoding heat shock proteins and cytochrome P450s) were upregulated to maintain cellular homeostasis through the mitigation of oxidative damage. Moreover, transcripts corresponding to saccharide metabolism, vacuolar transport, and other pollen-related developmental processes were drastically downregulated among treated microspores. Temperature stress also triggered cell wall modification and cell proliferation-characteristics that implied putative commitment to an embryonic pathway. These findings collectively demonstrate that pretreatment cold stress induces soybean microspore reprogramming through suppression of the gametophytic program while concomitantly driving sporophytic development.

9.
Evol Appl ; 13(8): 1949-1967, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32908597

ABSTRACT

Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.

10.
Plant Sci ; 285: 99-109, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31203898

ABSTRACT

Seed development is a complex regulatory process that includes a transition from gametophytic to sporophytic program. The synchronized development of different seed compartments (seed coat, endosperm and embryo) depends on a balance in parental genome contributions. In the most severe cases, the disruption of the balance leads to seed abortion. This represents one of the main obstacles for the engineering of asexual reproduction through seeds (apomixis), and for generating new interspecies hybrids. The repression of auxin synthesis by the Polycomb Repressive Complex 2 (PRC2) is a major mechanism contributing to sensing genome balance. However, current efforts focusing on decreasing PRC2 or elevating auxin levels have not yet resulted in the production of apomictic seed. Here, we show that EMSY-Like Tudor/Agenet H3K36me3 histone readers EML1 and EML3 are necessary for early stages of seed development to proceed at a normal rate in Arabidopsis. We further demonstrate that both EML1 and EML3 are required to prevent the initiation of seed development in the absence of fertilization. Based on the whole genome expression analysis, we identify auxin transport and signaling genes as the most enriched downstream targets of EML1 and EML3. We hypothesize that EML1 and EML3 function to repress and soften paternal gene expression by fine-tuning auxin responses. Discovery of this pathway may contribute to the engineering of apomixis and interspecies hybrids.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Cytoskeletal Proteins/physiology , Histones/metabolism , Nuclear Proteins/physiology , Seeds/growth & development , Apomixis , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cytoskeletal Proteins/genetics , Fertilization , Nuclear Proteins/genetics , Phylogeny , Plants, Genetically Modified , Polymerase Chain Reaction , Seeds/physiology
11.
BMC Gastroenterol ; 18(1): 93, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29929472

ABSTRACT

BACKGROUND: Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS: In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS: Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS: These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.


Subject(s)
Gastroenteritis/complications , Gastroenteritis/microbiology , Gastrointestinal Microbiome , Malnutrition/complications , Malnutrition/microbiology , Rotavirus Infections/complications , Rotavirus Infections/microbiology , Animals , Diarrhea/microbiology , Diarrhea/virology , Disease Susceptibility , Feces/microbiology , Gastroenteritis/virology , Humans , Infant , Intestines/microbiology , Malnutrition/virology , RNA, Ribosomal, 16S , Rotavirus Infections/virology , Sequence Analysis, RNA , Swine , Virus Shedding , Weight Gain
12.
PLoS One ; 13(5): e0196171, 2018.
Article in English | MEDLINE | ID: mdl-29750790

ABSTRACT

Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.


Subject(s)
Cattle Diseases/epidemiology , Feces/microbiology , Microbiota , Peripartum Period/physiology , Salmonella Infections, Animal/epidemiology , Salmonella/pathogenicity , Animals , Cattle , Cattle Diseases/microbiology , Dairying , Female , Prevalence , RNA, Ribosomal, 16S/genetics , Salmonella/genetics , Salmonella Infections, Animal/microbiology , Serotyping , United States/epidemiology
13.
BMC Genomics ; 18(1): 707, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28886704

ABSTRACT

BACKGROUND: Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. RESULTS: Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. CONCLUSIONS: These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change.


Subject(s)
Gene Expression Profiling , Transcription, Genetic , Zea mays/genetics , Climate Change , Crops, Agricultural , Environment , Genes, Plant/genetics , Genetic Variation , Mexico , Sequence Analysis, RNA
14.
BMC Genomics ; 18(1): 472, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28645245

ABSTRACT

BACKGROUND: Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. RESULTS: The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. CONCLUSIONS: This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.


Subject(s)
Alleles , Aphids/physiology , Gene Expression Profiling , Glycine max/genetics , Glycine max/physiology , Animals , Chromosomes, Plant/genetics , Genetic Loci/genetics , RNA, Messenger/genetics
15.
J Exp Bot ; 67(5): 1311-26, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26685185

ABSTRACT

Plants have evolved to extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control growth, development, and defense. In Arabidopsis thaliana, the EXCESS MICROSPOROCYTES1 (EMS1) LRR-RLK and its potential small protein ligand TAPETUM DETERMINANT1 (TPD1) are specifically required for anther cell differentiation; however, TPD1 and EMS1 orthologs also control megaspore mother cell proliferation in rice and maize ovules. Here, the molecular function of TPD1 was demonstrated during ovule development in Arabidopsis using a gain-of-function approach. In ovules, the EMS1 gene was primarily expressed in nucellus epidermis and chalaza, whereas the expression of TPD1 was weakly restricted to the distal end of integuments. Ectopic expression of TPD1 caused pleiotropic defects in ovule and seed development. RNA sequencing analysis showed that ectopic expression of TPD1 altered expression of auxin signaling genes and core cell-cycle genes during ovule development. Moreover, ectopic expression of TPD1 not only affected auxin response but also enhanced expression of cyclin genes CYCD3;3 and CYCA2;3 in ovules. Thus, these results provide insight into the molecular mechanism by which TPD1-EMS1 signaling controls plant development possibly via regulation of auxin signaling and cell-cycle genes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Ectopic Gene Expression , Ovule/growth & development , Ovule/metabolism , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , Down-Regulation/genetics , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , Ovule/cytology , Promoter Regions, Genetic/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Seeds/genetics , Seeds/growth & development , Signal Transduction/genetics , Up-Regulation/genetics
16.
J Exp Bot ; 66(20): 6471-82, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26175354

ABSTRACT

fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.


Subject(s)
Fruit/growth & development , Plant Proteins/genetics , Solanum lycopersicum/genetics , Fruit/genetics , Fruit/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci , Sequence Alignment , Sequence Analysis, DNA
17.
Pest Manag Sci ; 71(3): 423-32, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24796243

ABSTRACT

BACKGROUND: Detoxification genes have been associated with insecticide adaptation in the diamondback moth, Plutella xylostella. The link between chemosensation genes and adaptation, however, remains unexplored. To gain a better understanding of the involvement of these genes in insecticide adaptation, the authors exposed lines of P. xylostella to either high uniform (HU) or low heterogeneous (LH) concentrations of permethrin, expecting primarily physiological or behavioral selection respectively. Initially, 454 pyrosequencing was applied, followed by an examination of expression profiles of candidate genes that responded to selection [cytochrome P450 (CYP), glutathione S-transferase (GST), carboxylesterase (CarE), chemosensory protein (CSP) and odorant-binding protein (OBP)] by quantitative PCR in the larvae. Toxicity and behavioral assays were also conducted to document the effects of the two forms of exposure. RESULTS: Pyrosequencing of the P. xylostella transcriptome from adult heads and third instars produced 198,753 reads with 52,752,486 bases. Quantitative PCR revealed overexpression of CYP4M14, CYP305B1 and CSP8 in HU larvae. OBP13, however, was highest in LH. Larvae from LH and HU lines had up to five- and 752-fold resistance levels respectively, which could be due to overexpression of P450s. However, the behavioral responses of all lines to a series of permethrin concentrations did not vary significantly in any of the generations examined, in spite of the observed upregulation of CSP8 and OBP13. CONCLUSION: Expression patterns from the target genes provide insights into behavioral and physiological responses to permethrin and suggest a new avenue of research on the role of chemosensation genes in insect adaptation to toxins.


Subject(s)
Insecticides/pharmacology , Moths/genetics , Permethrin/pharmacology , Animals , Behavior, Animal/drug effects , Inactivation, Metabolic , Insect Proteins/genetics , Insecticide Resistance/genetics , Larva/enzymology , Larva/genetics , Larva/physiology , Moths/enzymology , Moths/physiology , Sequence Analysis, DNA , Transcriptome
18.
J Genet Genomics ; 41(3): 165-75, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24656236

ABSTRACT

In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chromosomes, Plant/genetics , Crossing Over, Genetic , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Chromosome Segregation , Chromosomes, Plant/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Meiosis/genetics , Mutation , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombination, Genetic
19.
PLoS One ; 8(11): e81389, 2013.
Article in English | MEDLINE | ID: mdl-24312295

ABSTRACT

Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.


Subject(s)
Crops, Agricultural/parasitology , Cuscuta/genetics , Gene Expression Profiling , Cuscuta/microbiology , Cuscuta/physiology , Genes, Plant/genetics , Genomics , High-Throughput Nucleotide Sequencing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Species Specificity
20.
PLoS One ; 8(2): e56555, 2013.
Article in English | MEDLINE | ID: mdl-23424668

ABSTRACT

BACKGROUND: Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. METHODOLOGY AND PRINCIPAL FINDINGS: We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. CONCLUSIONS AND SIGNIFICANCE: The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.


Subject(s)
Coleoptera/genetics , Genes, Insect/genetics , Odorants , Transcriptome , Amino Acid Sequence , Animals , Base Sequence , Coleoptera/physiology , Cues , Female , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Molecular Sequence Data , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Sequence Analysis , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...