Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 147(24): 244705, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29289150

ABSTRACT

Specific features of diffractive scattering of H2 from metal surfaces can serve as fingerprints of the reactivity of the metal towards H2, and in principle theory-experiment comparisons for molecular diffraction can help with the validation of semi-empirical functionals fitted to experiments of sticking of H2 on metals. However, a recent comparison of calculated and Debye-Waller (DW) extrapolated experimental diffraction probabilities, in which the theory was done on the basis of a potential energy surface (PES) accurately describing sticking to Ru(0001), showed substantial discrepancies, with theoretical and experimental probabilities differing by factors of 2 and 3. We demonstrate that assuming a particular amount of random static disorder to be present in the positions of the surface atoms, which can be characterized through a single parameter, removes most of the discrepancies between experiment and theory. Further improvement might be achievable by improving the accuracy of the DW extrapolation, the model of the H2 rotational state distribution in the experimental beams, and by fine-tuning the PES. However, the question of whether the DW model is applicable to attenuation of diffractive scattering in the presence of a sizable van der Waals well (depth ≈ 50 meV) should also receive attention, in addition to the question of whether the amount of static surface disorder effectively assumed in the modeling by us could have been present in the experiments.

2.
J Chem Phys ; 145(14): 144701, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27782530

ABSTRACT

We have performed calculations on the dissociative chemisorption of H2 on un-reconstructed and reconstructed Au(111) with density functional theory, and dynamics calculations on this process on un-reconstructed Au(111). Due to a very late barrier for dissociation, H2 + Au(111) is a candidate H2-metal system for which the dissociative chemisorption could be considerably affected by the energy transfer to electron-hole pairs. Minimum barrier geometries and potential energy surfaces were computed for six density functionals. The functionals tested yield minimum barrier heights in the range of 1.15-1.6 eV, and barriers that are even later than found for the similar H2 + Cu(111) system. The potential energy surfaces have been used in quasi-classical trajectory calculations of the initial (v,J) state resolved reaction probability for several vibrational states v and rotational states J of H2 and D2. Our calculations may serve as predictions for state-resolved associative desorption experiments, from which initial state-resolved dissociative chemisorption probabilities can be extracted by invoking detailed balance. The vibrational efficacy ηv=0→1 reported for D2 dissociating on un-reconstructed Au(111) (about 0.9) is similar to that found in earlier quantum dynamics calculations on H2 + Ag(111), but larger than found for D2 + Cu(111). With the two functionals tested most extensively, the reactivity of H2 and D2 exhibits an almost monotonic increase with increasing rotational quantum number J. Test calculations suggest that, for chemical accuracy (1 kcal/mol), the herringbone reconstruction of Au(111) should be modeled.

3.
J Phys Chem A ; 119(50): 12146-58, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26258988

ABSTRACT

van der Waals functionals have recently been applied to obtain a potential energy surface to describe the dissociation of H2 on Ru(0001), where an improvement was found for computed reaction probabilities compared to experiment, which could not be achieved with the use of other exchange-correlation functionals. It is, however, not yet clear to what extent van der Waals functionals give a better description of other molecule-metal surface systems. In this study, the optPBE-vdW-DF functional is compared to the SRP48 functional, which was originally fitted to describe the dissociation of H2 on Cu(111), in terms of the resulting potential energy surfaces and results of quasi-classical dynamics calculations and their agreement with experiment for different H2-metal surface systems. It is found that overall the optPBE-vdW-DF functional yields potential energy surfaces that are very similar to potential energy surfaces computed with the SRP48 functional. In dynamics calculations the optPBE-vdW-DF functional gives a slightly better description of molecular beam experiments. Also a different dependence of reaction on the rotational quantum number J is found, which is in better agreement with experimental data for H2 dissociation on Cu(111). The vibrational efficacy is found to be relatively insensitive to which of the two functionals is chosen.

4.
J Phys Chem A ; 117(36): 8770-81, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23763274

ABSTRACT

Surface phonons and surface temperature may have important effects on reactions of molecules at surfaces, and at present much remains unknown about these effects. A question addressed here, which has received little attention so far, is how reaction at elevated temperature is affected by thermal lattice expansion. To answer this question for the benchmark reaction of H2 and D2 with Cu(111), we have performed quantum and quasi-classical dynamics calculations. The specific reaction parameter (SRP) approach to density functional theory (DFT) has been used to compute the required six-dimensional potential energy surfaces (PES). Computed reaction probabilities and rotational quadrupole alignment parameters have been compared for surface temperatures Ts = 0 and 925 K. Surface thermal expansion of the lattice leads to a considerable decrease of reaction barrier heights and thereby to increased reaction probabilities as well as decreased rotational quadrupole alignment parameter values in associative desorption.

5.
ACS Med Chem Lett ; 2(2): 119-23, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-24900289

ABSTRACT

Glucosylceramide synthase (GCS) is an important target for clinical drug development for the treatment of lysosomal storage disorders and a promising target for combating type 2 diabetes. Iminosugars are useful leads for the development of GCS inhibitors; however, the effective iminosugar type GCS inhibitors reported have some unwanted cross-reactivity toward other glyco-processing enzymes. In particular, iminosugar type GCS inhibitors often also inhibit to some extent human acid glucosylceramidase (GBA1) and the nonlysosomal glucosylceramidase (GBA2), the two enzymes known to process glucosylceramide. Of these, GBA1 itself is a potential drug target for the treatment of the lysosomal storage disorder, Gaucher disease, and selective GBA1 inhibitors are sought after as potential chemical chaperones. The physiological importance of GBA2 in glucosylceramide processing in relation to disease states is less clear, and here, selective inhibitors can be of use as chemical knockout entities. In this communication, we report our identification of a highly potent and selective N-alkylated l-ido-configured iminosugar. In particular, the selectivity of 27 for GCS over GBA1 is striking.

SELECTION OF CITATIONS
SEARCH DETAIL
...