Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 94(9): 095005, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15783974

ABSTRACT

The first hydrodynamic experiments were performed on the National Ignition Facility. A supersonic jet was formed via the interaction of a laser driven shock ( approximately 40 Mbar) with 2D and 3D density perturbations. The temporal evolution of the jet's spatial scales and ejected mass were measured with point-projection x-ray radiography. Measurements of the large-scale features and mass are in good agreement with 2D and 3D numerical simulations. These experiments provide quantitative data on the evolution of 3D supersonic jets and provide insight into their 3D behavior.

2.
Article in English | MEDLINE | ID: mdl-11969590

ABSTRACT

We have designed and produced hot, millimeter-scale, high-Z plasmas of interest for National Ignition Facility hohlraum target design. Using a high-Z gas fill produces electron temperatures in the 3.5-6-keV range, the highest temperatures measured to date for high-density (10(21) e/cm(3)) laser-heated plasmas, and much higher than the 3 keV found for low-Z (neopentane) fills. These measurements are in good agreement with the target design calculations, and the L-shell spectroscopic approach used to estimate the electron temperature has certain advantages over traditional K-shell approaches.

SELECTION OF CITATIONS
SEARCH DETAIL