Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Int J Neurosci ; : 1-13, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235059

ABSTRACT

AIM: We examined associations among injury severity, white matter structural connectivity within functionally defined brain networks and psychosocial/adaptive outcomes in children with traumatic brain injury (TBI). METHOD: Participants included 58 youths (39 male) with complicated-mild TBI (cmTBI; n = 12, age = 12.6 ± 2.0), moderate/severe TBI (msTBI; n = 16, age = 11.4 ± 2.9) and a comparison group with orthopedic injury (OI; n = 24, age = 11.7 ± 2.1), at least 1 year post-injury. Participants underwent diffusion tensor imaging and parents rated children's behavioral and adaptive function on the CBCL and ABAS-3, respectively. Probabilistic tractography quantified streamline density. Group differences were analyzed for structural connectivity and behavioral outcomes. RESULTS: Groups differed in structural connectivity within regions of the default mode and central executive networks (ps < .05, FDR corrected). The msTBI group displayed decreased connectivity relative to cmTBI and OI, whereas the cmTBI group displayed increased connectivity relative to msTBI and OI. Similar patterns emerged in several behavioral domains. Ordinary least squares path analyses showed that structural connectivity mediated the relationship between injury severity and multiple parent-reported outcomes for msTBI. INTERPRETATION: White matter structural connectivity may explain unique variance in long-term psychosocial and adaptive outcome in children with TBI, particularly in cases of moderate-to-severe injury.

2.
J Neurotrauma ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235436

ABSTRACT

The past decade has seen impressive advances in neuroimaging, moving from qualitative to quantitative outputs. Available techniques now allow for the inference of microscopic changes occurring in white and gray matter, along with alterations in physiology and function. These existing and emerging techniques hold the potential of providing unprecedented capabilities in achieving a diagnosis and predicting outcomes for traumatic brain injury (TBI) and a variety of other neurological diseases. To see this promise move from the research lab into clinical care, an understanding is needed of what normal data look like for all age ranges, sex, and other demographic and socioeconomic categories. Clinicians can only use the results of imaging scans to support their decision-making if they know how the results for their patient compare with a normative standard. This potential for utilizing magnetic resonance imaging (MRI) in TBI diagnosis motivated the American College of Radiology and Cohen Veterans Bioscience to create a reference database of healthy individuals with neuroimaging, demographic data, and characterization of psychological functioning and neurocognitive data that will serve as a normative resource for clinicians and researchers for development of diagnostics and therapeutics for TBI and other brain disorders. The goal of this article is to introduce the large, well-curated Normative Neuroimaging Library (NNL) to the research community. NNL consists of data collected from ∼1900 healthy participants. The highlights of NNL are (1) data are collected across a diverse population, including civilians, veterans, and active-duty service members with an age range (18-64 years) not well represented in existing datasets; (2) comprehensive structural and functional neuroimaging acquisition with state-of-the-art sequences (including structural, diffusion, and functional MRI; raw scanner data are preserved, allowing higher quality data to be derived in the future; standardized imaging acquisition protocols across sites reflect sequences and parameters often recommended for use with various neurological and psychiatric conditions, including TBI, post-traumatic stress disorder, stroke, neurodegenerative disorders, and neoplastic disease); and (3) the collection of comprehensive demographic details, medical history, and a broad structured clinical assessment, including cognition and psychological scales, relevant to multiple neurological conditions with functional sequelae. Thus, NNL provides a demographically diverse population of healthy individuals who can serve as a comparison group for brain injury study and clinical samples, providing a strong foundation for precision medicine. Use cases include the creation of imaging-derived phenotypes (IDPs), derivation of reference ranges of imaging measures, and use of IDPs as training samples for artificial intelligence-based biomarker development and for normative modeling to help identify injury-induced changes as outliers for precision diagnosis and targeted therapeutic development. On its release, NNL is poised to support the use of advanced imaging in clinician decision support tools, the validation of imaging biomarkers, and the investigation of brain-behavior anomalies, moving the field toward precision medicine.

3.
Acad Med ; 99(9): 963, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39194297
4.
Magn Reson Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136245

ABSTRACT

PURPOSE: To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. METHOD: The ME, TDM, and the reference single-echo (SE) sequences with six TEs were implemented using Pulseq with single-band (SB) and multi-band 2 (MB2) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized RMS error (NRMSE). Shinnar-Le Roux (SLR) pulses were implemented for the SB-ME and SB-SE sequences to investigate the impact of slice profiles on ME sequences. For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). RESULTS: TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. CONCLUSION: Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.

5.
medRxiv ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39211856

ABSTRACT

Background: Deficits in dual-tasks (DT) are frequently observed post-concussion (i.e., mild Traumatic Brain Injury). However, traditional DT may not be relevant to daily life. Walking while talking elicits DT costs in healthy adults and is part of daily life. Objective: We investigated the effect of concussion on walking with extemporaneous speech and explored relationships between DT and acute symptoms. Methods: Participants with recent concussion (<14 days post-injury) and controls completed three tasks: single-task gait without speaking (ST G ), single-task speaking without walking (ST S ) and walking while speaking (DT). Silent pauses in speech audio reflected cognitive performance, and gait was quantified using inertial sensors. We used linear mixed models to compare groups and conditions and explored associations with self-reported symptoms. Results: Both concussion (n=19) and control (n=18) groups exhibited longer speech pauses ( p < 0.001), slower walking speeds ( p < 0.001), and slower cadence ( p < 0.001) during the DT compared to ST conditions. There were no group differences or interactions for speech pauses ( p > 0.424). The concussion group walked slower ( p = 0.010) and slowed down more during DT than the control group (group*task p = 0.032). Vestibular symptoms strongly associated with ST speech pause duration ( ρ = 0.72), ST gait speed ( ρ = -0.75), and DT gait speed ( ρ = -0.78). Conclusions: Extemporaneous speech is well-practiced, but challenging to complete while walking post-concussion. Strong associations between DT outcomes and vestibular-related symptoms suggest DT deficits vary with post-concussion symptomology. DT deficits may be deleterious to daily tasks post-concussion.

6.
Article in English | MEDLINE | ID: mdl-39019484

ABSTRACT

OBJECTIVE: To (1) characterize lifetime mild traumatic brain injury (TBI) exposures among male and female US military service members and Veterans (SMVs) and (2) evaluate sex-related differences in mild TBI exposures. SETTING: Clinical research laboratory. PARTICIPANTS: Participants were enrolled in the ongoing Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC) Prospective Longitudinal Study. DESIGN: Cross-sectional. MAIN MEASURES: Lifetime history of mild TBI was measured via structured interview. All mild TBI characteristics were collected as part of this interview, including total lifetime number; environment (deployment vs. non-deployment); timing of injury (relative to military service and age); and mechanism of injury (blast-related vs. non-blast). RESULTS: Most participants (n = 2323; 87.5% male; 79.6% Veteran) reported ≥1 lifetime mild TBI (n = 1912; 82%), among whom, many reported ≥2 lifetime mild TBIs. Female SMVs reported fewer total lifetime mild TBIs than male participants (P < 0.001), including fewer deployment-related (P < 0.001) and non-deployment (P < 0.001) mild TBIs. There were significant sex differences for total number of mild TBIs sustained before (P = 0.005) and during (P < 0.001) military service but not after separation from military service (P = 0.99). Among participants with a lifetime history of mild TBI, female SMVs were less likely to report ≥2 mTBIs (P = 0.003); however, male SMVs were more likely to report a mild TBI during military service (P = 0.03), including combat-related mild TBI (P < 0.001) and mild TBI involving blast (P < 0.001). CONCLUSIONS: These findings inform clinical and research efforts related to mild TBI in US military SMVs. It may not be sufficient to simply measure the total number of mild TBIs when seeking to compare clinical outcomes related to mild TBI between sexes; rather, it is important to measure and account for the timing, environment, and mechanisms associated with mild TBIs sustained by female and male SMVs.

7.
Mil Med ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002108

ABSTRACT

INTRODUCTION: The neurobehavioral significance of white matter hyperintensities (WMHs) seen on magnetic resonance imaging after traumatic brain injury (TBI) remains unclear, especially in Veterans and Service Members with a history of mild TBI (mTBI). In this study, we investigate the relation between WMH, mTBI, age, and cognitive performance in a large multisite cohort from the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. MATERIALS AND METHODS: The neuroimaging and neurobehavioral assessments for 1,011 combat-exposed, post-9/11 Veterans and Service Members (age range 22-69 years), including those with a history of at least 1 mTBI (n = 813; median postinjury interval of 8 years) or negative mTBI history (n = 198), were examined. RESULTS: White matter hyperintensities were present in both mTBI and comparison groups at similar rates (39% and 37%, respectively). There was an age-by-diagnostic group interaction, such that older Veterans and Service Members with a history of mTBI demonstrated a significant increase in the number of WMHs present compared to those without a history of mTBI. Additional associations between an increase in the number of WMHs and service-connected disability, insulin-like growth factor-1 levels, and worse performance on tests of episodic memory and executive functioning-processing speed were found. CONCLUSIONS: Subtle but important clinical relationships are identified when larger samples of mTBI participants are used to examine the relationship between history of head injury and radiological findings. Future studies should use follow-up magnetic resonance imaging and longitudinal neurobehavioral assessments to evaluate the long-term implications of WMHs following mTBI.

8.
Photobiomodul Photomed Laser Surg ; 42(6): 404-413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848287

ABSTRACT

Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM) and neuromuscular control. Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other body systems. Methods: In total, 43 (39 male) participants, age 18-69 years (mean, 49.5; SD, 14.45), with a self-reported history of concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, participants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes (LED) and a near-infrared LED nasal clip. Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34 (nondominant hand), respectively. Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a noninvasive solution for improved neuromuscular health.


Subject(s)
Low-Level Light Therapy , Humans , Male , Middle Aged , Adult , Female , Low-Level Light Therapy/methods , Aged , Adolescent , Young Adult , Acceleration , Brain Concussion/radiotherapy , Proof of Concept Study , Reaction Time/radiation effects , Hand Strength , Postural Balance/radiation effects
9.
Neurology ; 102(12): e209417, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38833650

ABSTRACT

BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is a concern for US service members and veterans (SMV), leading to heterogeneous psychological and cognitive outcomes. We sought to identify neuropsychological profiles of mild TBI (mTBI) and posttraumatic stress disorder (PTSD) among the largest SMV sample to date. METHODS: We analyzed cross-sectional baseline data from SMV with prior combat deployments enrolled in the ongoing Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study. Latent profile analysis identified symptom profiles using 35 indicators, including physical symptoms, depression, quality of life, sleep quality, postconcussive symptoms, and cognitive performance. It is important to note that the profiles were determined independently of mTBI and probable PTSD status. After profile identification, we examined associations between demographic variables, mTBI characteristics, and PTSD symptoms with symptom profile membership. RESULTS: The analytic sample included 1,659 SMV (mean age 41.1 ± 10.0 years; 87% male); among them 29% (n = 480) had a history of non-deployment-related mTBI only, 14% (n = 239) had deployment-related mTBI only, 36% (n = 602) had both non-deployment and deployment-related mTBI, and 30% (n = 497) met criteria for probable PTSD. A 6-profile model had the best fit, with separation on all indicators (p < 0.001). The model revealed distinct neuropsychological profiles, representing a combination of 3 self-reported functioning patterns: high (HS), moderate (MS), and low (LS), and 2 cognitive performance patterns: high (HC) and low (LC). The profiles were (1) HS/HC: n=301, 18.1%; (2) HS/LC: n=294, 17.7%; (3) MS/HC: n=359, 21.6%; (4) MS/LC: n=316, 19.0%; (5) LS/HC: n=228, 13.7%; and (6) LS/LC: n=161, 9.7%. SMV with deployment-related mTBI tended to be grouped into lower functioning profiles and were more likely to meet criteria for probable PTSD. Conversely, SMV with no mTBI exposure or non-deployment-related mTBI were clustered in higher functioning profiles and had a lower likelihood of meeting criteria for probable PTSD. DISCUSSION: Findings suggest varied symptom and functional profiles in SMV, influenced by injury context and probable PTSD comorbidity. Despite diagnostic challenges, comprehensive assessment of functioning and cognition can detect subtle differences related to mTBI and PTSD, revealing distinct neuropsychological profiles. Prioritizing early treatment based on these profiles may improve prognostication and support efficient recovery.


Subject(s)
Brain Concussion , Military Personnel , Neuropsychological Tests , Stress Disorders, Post-Traumatic , Humans , Male , Adult , Female , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/etiology , Brain Concussion/psychology , Brain Concussion/complications , Brain Concussion/epidemiology , Cross-Sectional Studies , Middle Aged , Military Personnel/psychology , Longitudinal Studies , Veterans/psychology , Prospective Studies , Military Deployment/psychology , Post-Concussion Syndrome/psychology , Post-Concussion Syndrome/epidemiology , Quality of Life
10.
Ann Neurol ; 96(2): 365-377, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38845484

ABSTRACT

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Humans , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Male , Female , Adult , Middle Aged , Cohort Studies , Brain/diagnostic imaging , Brain/pathology , Aged , Aging/pathology , Aging, Premature/diagnostic imaging , Aging, Premature/pathology
11.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895252

ABSTRACT

Purpose: To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. Method: The ME, TDM, and the reference single-echo (SE) sequences with six echo times (TE) were implemented using Pulseq with single-band (SB-) and multi-band 2 (MB2-) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized root mean squared error (NRMSE). For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). Results: TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. Conclusion: Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.

12.
J Clin Med ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792464

ABSTRACT

Objective: To determine whether early structural brain trajectories predict early childhood neurodevelopmental deficits in complex CHD patients and to assess relative cumulative risk profiles of clinical, genetic, and demographic risk factors across early development. Study Design: Term neonates with complex CHDs were recruited at Texas Children's Hospital from 2005-2011. Ninety-five participants underwent three structural MRI scans and three neurodevelopmental assessments. Brain region volumes and white matter tract fractional anisotropy and radial diffusivity were used to calculate trajectories: perioperative, postsurgical, and overall. Gross cognitive, language, and visuo-motor outcomes were assessed with the Bayley Scales of Infant and Toddler Development and with the Wechsler Preschool and Primary Scale of Intelligence and Beery-Buktenica Developmental Test of Visual-Motor Integration. Multi-variable models incorporated risk factors. Results: Reduced overall period volumetric trajectories predicted poor language outcomes: brainstem ((ß, 95% CI) 0.0977, 0.0382-0.1571; p = 0.0022) and white matter (0.0023, 0.0001-0.0046; p = 0.0397) at 5 years; brainstem (0.0711, 0.0157-0.1265; p = 0.0134) and deep grey matter (0.0085, 0.0011-0.0160; p = 0.0258) at 3 years. Maternal IQ was the strongest contributor to language variance, increasing from 37% at 1 year, 62% at 3 years, and 81% at 5 years. Genetic abnormality's contribution to variance decreased from 41% at 1 year to 25% at 3 years and was insignificant at 5 years. Conclusion: Reduced postnatal subcortical-cerebral white matter trajectories predicted poor early childhood neurodevelopmental outcomes, despite high contribution of maternal IQ. Maternal IQ was cumulative over time, exceeding the influence of known cardiac and genetic factors in complex CHD, underscoring the importance of heritable and parent-based environmental factors.

13.
J Neurol Phys Ther ; 48(3): 151-158, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38709008

ABSTRACT

BACKGROUND AND PURPOSE: Sport-specific training may improve postural control, while repetitive head acceleration events (RHAEs) may compromise it. Understanding the neural mechanisms underlying postural control may contextualize changes due to training and RHAE. The goal of this study was to determine whether postural sway during the Balance Error Scoring System (BESS) is related to white matter organization (WMO) in collegiate athletes. METHODS: Collegiate soccer ( N = 33) and non-soccer athletes ( N = 44) completed BESS and diffusion tensor imaging. Postural sway during each BESS stance, fractional anisotropy (FA), and mean diffusivity (MD) were extracted for each participant. Partial least squares analyses determined group differences in postural sway and WMO and the relationship between postural sway and WMO in soccer and non-soccer athletes separately. RESULTS: Soccer athletes displayed better performance during BESS 6, with lower FA and higher MD in the medial lemniscus (ML) and inferior cerebellar peduncle (ICP), compared to non-soccer athletes. In soccer athletes, lower sway during BESS 2, 5, and 6 was associated with higher FA and lower MD in the corticospinal tract, ML, and ICP. In non-soccer athletes, lower sway during BESS 2 and 4 was associated with higher FA and lower MD in the ML and ICP. BESS 1 was associated with higher FA, and BESS 3 was associated with lower MD in the same tracts in non-soccer athletes. DISCUSSION AND CONCLUSIONS: Soccer and non-soccer athletes showed unique relationships between sway and WMO, suggesting that sport-specific exposures are partly responsible for changes in neurological structure and accompanying postural control performance and should be considered when evaluating postural control after injury.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A472 ).


Subject(s)
Athletes , Diffusion Tensor Imaging , Postural Balance , Soccer , Humans , Postural Balance/physiology , Soccer/physiology , Male , Young Adult , White Matter/diagnostic imaging , White Matter/physiology , Female , Adolescent
14.
Neuroimage Clin ; 42: 103585, 2024.
Article in English | MEDLINE | ID: mdl-38531165

ABSTRACT

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Humans , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/physiopathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Reproducibility of Results , Brain/diagnostic imaging , Brain/physiopathology , Rest/physiology , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Brain Mapping/methods , Brain Mapping/standards
15.
Mil Med ; 189(9-10): e1938-e1946, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38401164

ABSTRACT

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.


Subject(s)
Brain Concussion , Magnetic Resonance Imaging , Humans , Male , Adult , Female , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/statistics & numerical data , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Cohort Studies , Blast Injuries/complications , Blast Injuries/diagnostic imaging , Blast Injuries/physiopathology , Veterans/statistics & numerical data , Middle Aged
16.
J Neurotrauma ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38323539

ABSTRACT

Intimate partner violence (IPV) is a significant, global public health concern. Women, individuals with historically underrepresented identities, and disabilities are at high risk for IPV and tend to experience severe injuries. There has been growing concern about the risk of exposure to IPV-related head trauma, resulting in IPV-related brain injury (IPV-BI), and its health consequences. Past work suggests that a significant proportion of women exposed to IPV experience IPV-BI, likely representing a distinct phenotype compared with BI of other etiologies. An IPV-BI often co-occurs with psychological trauma and mental health complaints, leading to unique issues related to identifying, prognosticating, and managing IPV-BI outcomes. The goal of this review is to identify important gaps in research and clinical practice in IPV-BI and suggest potential solutions to address them. We summarize IPV research in five key priority areas: (1) unique considerations for IPV-BI study design; (2) understanding non-fatal strangulation as a form of BI; (3) identifying objective biomarkers of IPV-BI; (4) consideration of the chronicity, cumulative and late effects of IPV-BI; and (5) BI as a risk factor for IPV engagement. Our review concludes with a call to action to help investigators develop ecologically valid research studies addressing the identified clinical-research knowledge gaps and strategies to improve care in individuals exposed to IPV-BI. By reducing the current gaps and answering these calls to action, we will approach IPV-BI in a trauma-informed manner, ultimately improving outcomes and quality of life for those impacted by IPV-BI.

17.
J Neuropsychiatry Clin Neurosci ; 36(1): 53-62, 2024.
Article in English | MEDLINE | ID: mdl-37559510

ABSTRACT

OBJECTIVE: The authors sought to identify predictive factors of new-onset or novel oppositional defiant disorder or conduct disorder assessed 24 months after traumatic brain injury (TBI). METHODS: Children ages 5 to 14 years who had experienced TBI were recruited from consecutive hospital admissions. Soon after injury, participants were assessed for preinjury characteristics, including psychiatric disorders, socioeconomic status (SES), psychosocial adversity, and family function, and the presence and location of lesions were documented by MRI. Psychiatric outcomes, including novel oppositional defiant disorder or conduct disorder, were assessed 24 months after injury. RESULTS: Of the children without preinjury oppositional defiant disorder, conduct disorder, or disruptive behavior disorder not otherwise specified who were recruited in this study, 165 were included in this sample; 95 of these children returned for the 24-month assessment. Multiple imputation was used to address attrition. The prevalence of novel oppositional defiant disorder or conduct disorder was 23.7 out of 165 (14%). In univariable analyses, novel oppositional defiant disorder or conduct disorder was significantly associated with psychosocial adversity (p=0.049) and frontal white matter lesions (p=0.016) and was marginally but not significantly associated with SES. In the final multipredictor model, frontal white matter lesions were significantly associated with novel oppositional defiant disorder or conduct disorder (p=0.021), and psychosocial adversity score was marginally but not significantly associated with the outcome. The odds ratio of novel oppositional defiant disorder or conduct disorder among the children with versus those without novel depressive disorder was significantly higher for girls than boys (p=0.025), and the odds ratio of novel oppositional defiant disorder or conduct disorder among the children with versus those without novel attention-deficit hyperactivity disorder (ADHD) was significantly higher for boys than girls (p=0.006). CONCLUSION: Approximately 14% of children with TBI developed oppositional defiant disorder or conduct disorder. The risk for novel oppositional defiant disorder or conduct disorder can be understood from a biopsychosocial perspective. Sex differences were evident for comorbid novel depressive disorder and comorbid novel ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain Injuries, Traumatic , Conduct Disorder , Child , Humans , Adolescent , Female , Male , Conduct Disorder/complications , Conduct Disorder/epidemiology , Conduct Disorder/psychology , Oppositional Defiant Disorder , Attention Deficit and Disruptive Behavior Disorders/epidemiology , Attention Deficit Disorder with Hyperactivity/psychology , Comorbidity , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/epidemiology
18.
J Neurotrauma ; 41(1-2): 32-40, 2024 01.
Article in English | MEDLINE | ID: mdl-37694678

ABSTRACT

Mild traumatic brain injury (mTBI) is the most common form of brain injury. While most individuals recover from mTBI, roughly 20% experience persistent symptoms, potentially including reduced fine motor control. We investigate relationships between regional white matter organization and subcortical volumes associated with performance on the Grooved Pegboard (GPB) test in a large cohort of military Service Members and Veterans (SM&Vs) with and without a history of mTBI(s). Participants were enrolled in the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. SM&Vs with a history of mTBI(s) (n = 847) and without mTBI (n = 190) underwent magnetic resonance imaging and the GPB test. We first examined between-group differences in GPB completion time. We then investigated associations between GPB performance and regional structural imaging measures (tractwise diffusivity, subcortical volumes, and cortical thickness) in SM&Vs with a history of mTBI(s). Lastly, we explored whether mTBI history moderated associations between imaging measures and GPB performance. SM&Vs with mTBI(s) performed worse than those without mTBI(s) on the non-dominant hand GPB test at a trend level (p < 0.1). Higher fractional anisotropy (FA) of tracts including the posterior corona radiata, superior longitudinal fasciculus, and uncinate fasciculus were associated with better GPB performance in the dominant hand in SM&Vs with mTBI(s). These findings support that the organization of several white matter bundles are associated with fine motor performance in SM&Vs. We did not observe that mTBI history moderated associations between regional FA and GPB test completion time, suggesting that chronic mTBI may not significantly influence fine motor control.


Subject(s)
Brain Concussion , Brain Injuries , Military Personnel , Veterans , White Matter , Humans , Brain Concussion/diagnostic imaging , Brain Concussion/complications , White Matter/diagnostic imaging , Brain Injuries/complications , Brain
19.
Pediatr Blood Cancer ; 71(2): e30787, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014868

ABSTRACT

BACKGROUND: Pediatric brain tumor survivors (PBTS) experience neurocognitive late effects, including problems with working memory, processing speed, and other higher order skills. These skill domains are subserved by various white matter (WM) pathways, but not much is known about these brain-behavior links in PBTS. This study examined the anterior corona radiata (ACR), inferior fronto-occipital fasciculi (IFOF), and superior longitudinal fasciculi (SLF) by analyzing associations among diffusion metrics and neurocognition. PROCEDURE: Thirteen PBTS and 10 healthy controls (HC), aged 9-14 years, completed performance-based measures of processing speed and executive function, and parents rated their child's day-to-day executive skills. Children underwent magnetic resonance imaging (MRI) with diffusion weighted imaging that yielded fractional anisotropy (FA) and mean diffusivity (MD) values. Independent samples t-tests assessed group differences on neurocognitive and imaging measures, and pooled within-group correlations examined relationships among measures across groups. RESULTS: PBTS performed more poorly than HC on measures of processing speed, divided attention, and shifting (d = -1.08 to -1.44). WM microstructure differences were significant in MD values for the bilateral SLF and ACR, with PBTS showing higher diffusivity (d = 0.75 to 1.21). Better processing speed, divided attention, and shifting were associated with lower diffusivity in the IFOF, SLF, and ACR, but were not strongly correlated with FA. CONCLUSIONS: PBTS demonstrate poorer neurocognitive functioning that is linked to differences in WM microstructure, as evidenced by higher diffusivity in the ACR, SLF, and IFOF. These findings support the use of MD in understanding alterations in WM microstructure in PTBS and shed light on potential functions of these pathways.


Subject(s)
Brain Neoplasms , White Matter , Child , Humans , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Brain/pathology , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Survivors , Anisotropy
20.
J Neurotrauma ; 41(7-8): 942-956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37950709

ABSTRACT

Exposure to blast overpressure has been a pervasive feature of combat-related injuries. Studies exploring the neurological correlates of repeated low-level blast exposure in career "breachers" demonstrated higher levels of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 and decreases in IL-10 within brain-derived extracellular vesicles (BDEVs). The current pilot study was initiated in partnership with the U.S. Special Operations Command (USSOCOM) to explore whether neuroinflammation is seen within special operators with prior blast exposure. Data were analyzed from 18 service members (SMs), inclusive of 9 blast-exposed special operators with an extensive career history of repeated blast exposures and 9 controls matched by age and duration of service. Neuroinflammation was assessed utilizing positron emission tomography (PET) imaging with [18F]DPA-714. Serum was acquired to assess inflammatory biomarkers within whole serum and BDEVs. The Blast Exposure Threshold Survey (BETS) was acquired to determine blast history. Both self-report and neurocognitive measures were acquired to assess cognition. Similarity-driven Multi-view Linear Reconstruction (SiMLR) was used for joint analysis of acquired data. Analysis of BDEVs indicated significant positive associations with a generalized blast exposure value (GBEV) derived from the BETS. SiMLR-based analyses of neuroimaging demonstrated exposure-related relationships between GBEV, PET-neuroinflammation, cortical thickness, and volume loss within special operators. Affected brain networks included regions associated with memory retrieval and executive functioning, as well as visual and heteromodal processing. Post hoc assessments of cognitive measures failed to demonstrate significant associations with GBEV. This emerging evidence suggests neuroinflammation may be a key feature of the brain response to blast exposure over a career in operational personnel. The common thread of neuroinflammation observed in blast-exposed populations requires further study.


Subject(s)
Blast Injuries , Military Personnel , Humans , Blast Injuries/complications , Pilot Projects , Neuroinflammatory Diseases , Military Personnel/psychology , Explosions , Interleukin-6
SELECTION OF CITATIONS
SEARCH DETAIL