Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(6): 1084-1097, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35045985

ABSTRACT

Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE: Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.


Subject(s)
Prostatic Neoplasms , Proteomics , Animals , Cell Line, Tumor , Epithelial Cell Adhesion Molecule , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
2.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624217

ABSTRACT

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Immediate-Early Proteins/metabolism , Mitosis , Neoplastic Cells, Circulating/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , 3' Untranslated Regions , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Indoles/pharmacology , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Mitosis/drug effects , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Transcription Elongation, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Nat Commun ; 11(1): 6311, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298946

ABSTRACT

Blood-borne metastasis to the brain is a major complication of breast cancer, but cellular pathways that enable cancer cells to selectively grow in the brain microenvironment are poorly understood. We find that cultured circulating tumor cells (CTCs), derived from blood samples of women with advanced breast cancer and directly inoculated into the mouse frontal lobe, exhibit striking differences in proliferative potential in the brain. Derivative cell lines generated by serial intracranial injections acquire selectively increased proliferative competency in the brain, with reduced orthotopic tumor growth. Increased Hypoxia Inducible Factor 1A (HIF1A)-associated signaling correlates with enhanced proliferation in the brain, and shRNA-mediated suppression of HIF1A or drug inhibition of HIF-associated glycolytic pathways selectively impairs brain tumor growth while minimally impacting mammary tumor growth. In clinical specimens, brain metastases have elevated HIF1A protein expression, compared with matched primary breast tumors, and in patients with brain metastases, hypoxic signaling within CTCs predicts decreased overall survival. The selective activation of hypoxic signaling by metastatic breast cancer in the brain may have therapeutic implications.


Subject(s)
Brain Neoplasms/secondary , Brain/pathology , Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Cells, Circulating/metabolism , Animals , Brain Neoplasms/blood , Brain Neoplasms/mortality , Breast Neoplasms/blood , Breast Neoplasms/mortality , Cell Hypoxia , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mammary Glands, Animal/pathology , Metabolomics , Mice , RNA, Small Interfering/metabolism , RNA-Seq , Signal Transduction/drug effects , Signal Transduction/genetics , Spheroids, Cellular , Stereotaxic Techniques , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Science ; 367(6485): 1468-1473, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32029688

ABSTRACT

Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Ribosomal Proteins/genetics , Animals , Breast Neoplasms/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...