Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 9(1): 12500, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467341

ABSTRACT

Environmental DNA analysis has emerged as a key component of biodiversity and environmental monitoring. However, the state and fate of eDNA in natural environments is still poorly understood for many ecological systems. Here we assess the state and fate of eDNA derived from the water flea, Daphnia magna, using a full factorial mesocosm experiment. We measured the quantity and degradation of eDNA over a two month period across a range of filters differing in pore size (0, 0.2, 1 and 10 µm), which spans the range of eDNA source material including subcellular, cellular and tissue. We also used two primer sets targeting mitochondrial (COI) and nuclear (18S) genomic regions. Our findings demonstrated that eDNA was most prevalent in the effluent water, but also reliably detected on the 0.2 µm filter, suggesting subcellular material is the predominate state of eDNA. Temporal eDNA quantity dynamics followed an exponential decay function over the course of 6-17 days, demonstrating a predictable decline in eDNA concentration. Nuclear eDNA was more abundant than mitochondrial eDNA, which may be a result of greater primer affinity, or indicate greater availability of nuclear eDNA gene targets in the environment. In contrast to two previous size-sorting experiments, which utilizing fish eDNA, our findings suggest that the state of invertebrate eDNA is much smaller than previously suspected. Overall, our data suggest that the detection of eDNA greatly depends on our knowledge of the state and fate of eDNA, which differ among species, and likely across environmental conditions.


Subject(s)
Cell Nucleus/genetics , DNA, Environmental/genetics , Daphnia/genetics , Mitochondria/genetics , Animals , Cell Nucleus/chemistry , Cell Nucleus/metabolism , DNA, Environmental/chemistry , Daphnia/chemistry , Daphnia/metabolism , Kinetics , Mitochondria/chemistry , Mitochondria/metabolism
3.
Commun Biol ; 1: 4, 2018.
Article in English | MEDLINE | ID: mdl-30271891

ABSTRACT

Accurate quantification of biodiversity is fundamental to understanding ecosystem function and for environmental assessment. Molecular methods using environmental DNA (eDNA) offer a non-invasive, rapid, and cost-effective alternative to traditional biodiversity assessments, which require high levels of expertise. While eDNA analyses are increasingly being utilized, there remains considerable uncertainty regarding the dynamics of multispecies eDNA, especially in variable systems such as rivers. Here, we utilize four sets of upland stream mesocosms, across an acid-base gradient, to assess the temporal and environmental degradation of multispecies eDNA. Sampling included water column and biofilm sampling over time with eDNA quantified using qPCR. Our findings show that the persistence of lotic multispecies eDNA, sampled from water and biofilm, decays to non-detectable levels within 2 days and that acidic environments accelerate the degradation process. Collectively, the results provide the basis for a predictive framework for the relationship between lotic eDNA degradation dynamics in spatio-temporally dynamic river ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL