Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405968

ABSTRACT

Automatic dense 3D surface registration is a powerful technique for comprehensive 3D shape analysis that has found a successful application in human craniofacial morphology research, particularly within the mandibular and cranial vault regions. However, a notable gap exists when exploring the frontal aspect of the human skull, largely due to the intricate and unique nature of its cranial anatomy. To better examine this region, this study introduces a simplified single-surface craniofacial bone mask comprising 9,999 quasi-landmarks, which can aid in the classification and quantification of variation over human facial bone surfaces. Automatic craniofacial bone phenotyping was conducted on a dataset of 31 skull scans obtained through cone-beam computed tomography (CBCT) imaging. The MeshMonk framework facilitated the non-rigid alignment of the constructed craniofacial bone mask with each individual target mesh. To gauge the accuracy and reliability of this automated process, 20 anatomical facial landmarks were manually placed three times by three independent observers on the same set of images. Intra- and inter-observer error assessments were performed using root mean square (RMS) distances, revealing consistently low scores. Subsequently, the corresponding automatic landmarks were computed and juxtaposed with the manually placed landmarks. The average Euclidean distance between these two landmark sets was 1.5mm, while centroid sizes exhibited noteworthy similarity. Intraclass coefficients (ICC) demonstrated a high level of concordance (>0.988), and automatic landmarking showing significantly lower errors and variation. These results underscore the utility of this newly developed single-surface craniofacial bone mask, in conjunction with the MeshMonk framework, as a highly accurate and reliable method for automated phenotyping of the facial region of human skulls from CBCT and CT imagery. This craniofacial template bone mask expansion of the MeshMonk toolbox not only enhances our capacity to study craniofacial bone variation but also holds significant potential for shedding light on the genetic, developmental, and evolutionary underpinnings of the overall human craniofacial structure.

2.
Cancers (Basel) ; 15(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894453

ABSTRACT

Resistance to chemotherapy is ultimately responsible for the majority of AML-related deaths, making the identification of resistance pathways a high priority. Transcriptomics approaches can be used to identify genes regulated at the level of transcription or mRNA stability but miss microRNA-mediated changes in translation, which are known to play a role in chemo-resistance. To address this, we compared miRNA profiles in paired chemo-sensitive and chemo-resistant subclones of HL60 cells and used a bioinformatics approach to predict affected pathways. From a total of 38 KEGG pathways implicated, TGF-ß/activin family signaling was selected for further study. Chemo-resistant HL60 cells showed an increased TGF-ß response but were not rendered chemo-sensitive by specific inhibitors. Differential pathway expression in primary AML samples was then investigated at the RNA level using publically available gene expression data in the TGCA database and by longitudinal analysis of pre- and post-resistance samples available from a limited number of patients. This confirmed differential expression and activity of the TGF-ß family signaling pathway upon relapse and revealed that the expression of TGF-ß and activin signaling genes at diagnosis was associated with overall survival. Our focus on a matched pair of cytarabine sensitive and resistant sublines to identify miRNAs that are associated specifically with resistance, coupled with the use of pathway analysis to rank predicted targets, has thus identified the activin/TGF-ß signaling cascade as a potential target for overcoming resistance in AML.

3.
Sci Rep ; 13(1): 3708, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36879022

ABSTRACT

Facial ancestry can be described as variation that exists in facial features that are shared amongst members of a population due to environmental and genetic effects. Even within Europe, faces vary among subregions and may lead to confounding in genetic association studies if unaccounted for. Genetic studies use genetic principal components (PCs) to describe facial ancestry to circumvent this issue. Yet the phenotypic effect of these genetic PCs on the face has yet to be described, and phenotype-based alternatives compared. In anthropological studies, consensus faces are utilized as they depict a phenotypic, not genetic, ancestry effect. In this study, we explored the effects of regional differences on facial ancestry in 744 Europeans using genetic and anthropological approaches. Both showed similar ancestry effects between subgroups, localized mainly to the forehead, nose, and chin. Consensus faces explained the variation seen in only the first three genetic PCs, differing more in magnitude than shape change. Here we show only minor differences between the two methods and discuss a combined approach as a possible alternative for facial scan correction that is less cohort dependent, more replicable, non-linear, and can be made open access for use across research groups, enhancing future studies in this field.


Subject(s)
Anthropology , Forehead , Chin , Consensus , Europe
4.
PLoS One ; 18(3): e0282683, 2023.
Article in English | MEDLINE | ID: mdl-36867644

ABSTRACT

INTRODUCTION: Patients with bariatric surgery often show poor long-term compliance to recommendations for prevention of nutrient deficiency but it is unclear which factors contribute. We investigated the associations of age, sex, and socioeconomic status (SES) with adherence to guideline recommendations on protein intake and micronutrient supplementation. METHODS: In a monocentric cross-sectional study we prospectively recruited patients with sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB) and a minimum postoperative period of 6 months. Clinical and demographic data were obtained from the patients' medical files and by questionnaire. Patients reported on supplement usage, recorded their dietary intake for seven days and underwent physical examinations including blood testing. RESULTS: We included 35 patients (SG: n = 25, RYGB: n = 10) with a mean (+SD) postoperative period of 20.2 (±10.4) months. Distributions of age, sex and SES were comparable between the SG and RYGB groups. Non-adherence to recommended protein intake was associated with age ≥ 50 years (p = 0.041) but not sex or SES. Protein intake inversely correlated with markers of obesity. There were no significant associations of age or sex with micronutrient supplementation. Only for vitamins A (p = 0.049) and B1 (p = 0.047) higher SES was associated with greater compliance. The only manifest deficiency associated with non-adherence to micronutrient supplementation was that for folic acid (p = 0.044). CONCLUSION: In patients after bariatric surgery, those of older age and of lower SES might have a greater risk of unfavorable outcome and may require greater attention to micronutrient and protein supplementation.


Subject(s)
Gastric Bypass , Humans , Middle Aged , Cross-Sectional Studies , Social Class , Dietary Supplements , Gastrectomy , Micronutrients
5.
Annu Rev Genomics Hum Genet ; 23: 383-412, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35483406

ABSTRACT

Variations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.


Subject(s)
Genome-Wide Association Study , Humans , Phenotype
7.
Cell Death Dis ; 9(8): 814, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050105

ABSTRACT

Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.


Subject(s)
Leukemia, Myeloid, Acute/pathology , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , 3' Untranslated Regions , Animals , Antagomirs/metabolism , Apoptosis , Cell Differentiation , Cell Proliferation , Granulocytes/cytology , Granulocytes/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Mitogen-Activated Protein Kinase 7/chemistry , Mitogen-Activated Protein Kinase 7/genetics , Prognosis , Survival Rate
8.
J Environ Radioact ; 190-191: 122-129, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29783196

ABSTRACT

The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European Commission's Joint Research Centre estimate 16 trillion cubic meters (Tcm) of technically recoverable shale gas in Europe. Taking into account that the exploitation of unconventional gas can be accompanied by serious health risks due to the release of toxic chemical components and natural occurring radionuclides into the return flow water and their near-surface accumulation in secondary precipitates, we investigated the release of U, Th and Ra from black shales by interaction with drilling fluids containing additives that are commonly employed for shale gas exploitation. We performed leaching tests at elevated temperatures and pressures with an Alum black shale from Bornholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a carbonate free black shale with pyrite and barite, containing 74.4 µg/g U. The Posidonia shales is a calcareous shale with pyrite but without detectable amounts of barite containing 3.6 µg/g U. Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2 and 3 of the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during the short-term and in the beginning of the long-term experiments. The activity concentration of 238U is as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is almost independent of pressure. The amount of uranium in the European shales is similar to that of the Marcellus Shale in the United States but the daughter product of 238U, the 226Ra activity concentrations in the experimentally derived leachates from the European shales are quite low in comparison to that found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra can easily be released.


Subject(s)
Radiation Monitoring , Radium/analysis , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Germany , Hydraulic Fracking , Minerals , Natural Gas , Oil and Gas Fields , Radioisotopes , Wastewater
9.
Nat Commun ; 9(1): 1637, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691391

ABSTRACT

Fluid-mediated mineral dissolution and reprecipitation processes are the most common mineral reaction mechanism in the solid Earth and are fundamental for the Earth's internal dynamics. Element exchange during such mineral reactions is commonly thought to occur via aqueous solutions with the mineral solubility in the coexisting fluid being a rate limiting factor. Here we show in high-pressure/low temperature rocks that element transfer during mineral dissolution and reprecipitation can occur in an alkali-Al-Si-rich amorphous material that forms directly by depolymerization of the crystal lattice and is thermodynamically decoupled from aqueous solutions. Depolymerization starts along grain boundaries and crystal lattice defects that serve as element exchange pathways and are sites of porosity formation. The resulting amorphous material occupies large volumes in an interconnected porosity network. Precipitation of product minerals occurs directly by repolymerization of the amorphous material at the product surface. This mechanism allows for significantly higher element transport and mineral reaction rates than aqueous solutions with major implications for the role of mineral reactions in the dynamic Earth.

11.
mBio ; 8(5)2017 10 10.
Article in English | MEDLINE | ID: mdl-29018125

ABSTRACT

The bacterial second messenger bis-(3'-5')-cyclic diguanosine monophosphate (c-di-GMP) ubiquitously promotes bacterial biofilm formation. Intracellular pools of c-di-GMP seem to be dynamically negotiated by diguanylate cyclases (DGCs, with GGDEF domains) and specific phosphodiesterases (PDEs, with EAL or HD-GYP domains). Most bacterial species possess multiple DGCs and PDEs, often with surprisingly distinct and specific output functions. One explanation for such specificity is "local" c-di-GMP signaling, which is believed to involve direct interactions between specific DGC/PDE pairs and c-di-GMP-binding effector/target systems. Here we present a systematic analysis of direct protein interactions among all 29 GGDEF/EAL domain proteins of Escherichia coli Since the effects of interactions depend on coexpression and stoichiometries, cellular levels of all GGDEF/EAL domain proteins were also quantified and found to vary dynamically along the growth cycle. Instead of detecting specific pairs of interacting DGCs and PDEs, we discovered a tightly interconnected protein network of a specific subset or "supermodule" of DGCs and PDEs with a coregulated core of five hyperconnected hub proteins. These include the DGC/PDE proteins representing the c-di-GMP switch that turns on biofilm matrix production in E. coli Mutants lacking these core hub proteins show drastic biofilm-related phenotypes but no changes in cellular c-di-GMP levels. Overall, our results provide the basis for a novel model of local c-di-GMP signaling in which a single strongly expressed master PDE, PdeH, dynamically eradicates global effects of several DGCs by strongly draining the global c-di-GMP pool and thereby restricting these DGCs to serving as local c-di-GMP sources that activate specific colocalized effector/target systems.IMPORTANCE c-di-GMP signaling in bacteria is believed to occur via changes in cellular c-di-GMP levels controlled by antagonistic and potentially interacting pairs of diguanylate cyclases (DGCs) and c-di-GMP phosphodiesterases (PDEs). Our systematic analysis of protein-protein interaction patterns of all 29 GGDEF/EAL domain proteins of E. coli, together with our measurements of cellular c-di-GMP levels, challenges both aspects of this current concept. Knocking out distinct DGCs and PDEs has drastic effects on E. coli biofilm formation without changing the cellular c-di-GMP level. In addition, rather than generally coming in interacting DGC/PDE pairs, a subset of DGCs and PDEs operates as central interaction hubs in a larger "supermodule," with other DGCs and PDEs behaving as "lonely players" without contacts to other c-di-GMP-related enzymes. On the basis of these data, we propose a novel concept of "local" c-di-GMP signaling in bacteria with multiple enzymes that make or break the second messenger c-di-GMP.


Subject(s)
Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Protein Domains , Bacterial Proteins/metabolism , Biofilms/growth & development , Cellulose/metabolism , Cyclic GMP/genetics , Cyclic GMP/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Gene Expression Regulation, Bacterial , Mutation , Phosphorus-Oxygen Lyases/metabolism , Protein Interaction Domains and Motifs , Signal Transduction
12.
Sci Total Environ ; 545-546: 641-53, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26775113

ABSTRACT

Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02-75 mg/L. 73% exceed the health limit (1.5mg/L) in both dry and wet seasons. F(-) concentrations in rivers are lower (0.2-9.2mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27-75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ(18)O) and hydrogen (δD) isotopic values range from -6.2 to +5.8‰ and -31.3 to +33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750-6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (<1000 ppm). Thus, geochemical F(-) enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management in Naivasha as well as similar active rift setting environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...