Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters











Publication year range
1.
Blood Cells Mol Dis ; 45(1): 46-52, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20227897

ABSTRACT

Individuals heterozygous for HbS and HbC (HbSC) represent about 1/3(rd) of sickle cell disease (SCD) patients. Whilst HbSC disease is generally milder, there is considerable overlap in symptoms with HbSS disease. HbSC patients, as well as HbSS ones, present with the chronic anaemia and panoply of acute vaso-occlusive complications that characterize SCD. However, there are important clinical and haematological differences. Certain complications occur with greater frequency in HbSC patients (like proliferative retinopathy and osteonecrosis) whilst intravascular haemolysis is reduced. Patients with HbSC disease can be considered as a discrete subset of SCD cases. Although much work has been carried out on understanding the pathogenesis of SCD in HbSS homozygotes, including the contribution of altered red blood cell permeability, relatively little pertains directly to HbSC individuals. Results reported in the literature suggest that HbSC cells, and particularly certain subpopulations, present with similar permeability to HbSS cells but there are also important differences - these have not been well characterized. We hypothesise that their unique cell transport properties accounts for the different pattern of disease in HbSC patients and represents a potential chemotherapeutic target not shared in red blood cells from HbSS patients. The distinct pattern of clinical haematology in HbSC disease is emphasised here. We analyse some of the electrophysiological properties of single red blood cells from HbSC patients, comparing them with those from HbSS patients and normal HbAA individuals. We also use the isosmotic haemolysis technique to investigate the behaviour of total red blood cell populations. Whilst both HbSS and HbSC cells show increased monovalent and divalent (Ca(2+)) cation conductance further elevated upon deoxygenation, the distribution of current magnitudes differs, and outward rectification is greatest for HbSC cells. In addition, although Gd(3+) largely abolishes the cation conductance of both HbSS and HbSC cells, only in HbSS ones are currents inhibited by the aminoglycosides like streptomycin. This distinction is retained in isosmotic lysis experiments where both HbSS and HbSC cells undergo haemolysis in sucrose solutions but streptomycin significantly inhibits lysis only in HbSS cells. These findings emphasise similarities but also differences in the permeability properties of HbSS and HbSC cells, which may be important in pathogenesis.


Subject(s)
Anemia, Sickle Cell/metabolism , Cell Membrane Permeability , Erythrocytes/pathology , Hemoglobin C/genetics , Hemoglobin SC Disease/metabolism , Hemoglobin, Sickle/genetics , Anemia, Sickle Cell/genetics , Calcium/metabolism , Cations/metabolism , Child , Electrophysiological Phenomena , Erythrocytes/metabolism , Hemoglobin C/metabolism , Hemoglobin SC Disease/genetics , Hemoglobin, Sickle/metabolism , Hemolysis , Heterozygote , Humans , Patch-Clamp Techniques
2.
Philos Trans R Soc Lond B Biol Sci ; 364(1514): 189-94, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-18957374

ABSTRACT

The abundant membrane protein AE1 normally functions as an obligate anion exchanger, with classical carrier properties, in human red blood cells. Recently, four single point mutations of hAE1 have been identified that have lost the anion exchange function, and act as non-selective monovalent cation channels, as shown in both red cell flux and oocyte expression studies. The red cell transport function shows a paradoxical temperature dependence, and is associated with spherocytic and stomatocytic red cell defects, and haemolytic anaemias. Other forms of AE1, including the native AE1 in trout red cells, and the human mutation R760Q show both channel-like and anion exchange properties. The present results point to membrane domains 9 and 10 being important in the functional modification of AE1 activity.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/chemistry , Anion Exchange Protein 1, Erythrocyte/metabolism , Cations/metabolism , Mutation , Protein Conformation
3.
Blood Cells Mol Dis ; 41(1): 44-9, 2008.
Article in English | MEDLINE | ID: mdl-18456522

ABSTRACT

The passive permeability pathways of red cells are poorly defined, with the exception of the Gardos channel. Several cation and anion pathways can be induced by a variety of manoeuvres, however, including treatment with oxidants, low ionic strength (LIS), shrinkage, swelling and also infection with the intra-erythrocytic malaria parasite. Several of these stimuli (malaria, swelling, LIS), in addition, also activate a non-electrolyte this permeability. Sickle cells uniquely show a deoxygenation-induced pathway, which is termed P(sickle) and is usually considered to be a conductive cationic pathway. In this report, we explore further the extent to which this permeability pathway of deoxygenated sickle cells is available for non-electrolyte transport. We show that a number of solutes are permeable, with greater permeability to sugars (notably lactose and maltose) and smaller molecules, and less to charged or zwitterionic species. Red cells from heterozygous HbSC patients also showed deoxygenation-induced haemolysis in isosmotic sucrose solution, though to a slightly lesser extent than for red cells from homozygous sickle cell patients. In contrast to sickle cells, red cells from beta-thalassaemic patients did not show haemolysis in isosmotic sucrose solutions, regardless of the O(2) tension. Of the secondary cellular changes resulting from incubation in non-electrolyte solutions (which include imposition of a highly positive membrane potential, marked intracellular alkalinisation and cell shrinkage), none appear to correlate with activation of the non-electrolyte permeability. Rather, findings indicate that it is low ionic strength per se that is responsible. Normal red cells also show changes in ionic and non-electrolyte permeability in low ionic strength media, and these permeabilities are compared to those found in deoxygenated sickle cells. The extent to which these different permeabilities in normal and sickle red cells can be ascribed to one or more common pathways remains to be determined.


Subject(s)
Anemia, Sickle Cell/blood , Cell Membrane Permeability , Erythrocytes, Abnormal/metabolism , Hemoglobin, Sickle/metabolism , Biological Transport , Electrolytes/metabolism , Erythrocyte Membrane/metabolism , Hemolysis , Humans , Oxyhemoglobins/metabolism , beta-Thalassemia/blood
4.
Philos Trans R Soc Lond B Biol Sci ; 363(1491): 517-25, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-17652073

ABSTRACT

Eco-efficiency is concerned with the efficient and sustainable use of resources in farm production and land management. It can be increased either by altering the management of individual crop and livestock enterprises or by altering the land-use system. This paper concentrates on the effects of crop sequence and rotation on soil fertility and nutrient use efficiency. The potential importance of mixed farming involving both crops and livestock is stressed, particularly when the systems incorporate biological nitrogen fixation and manure recycling. There is, however, little evidence that the trend in developed countries to farm-level specialization is being reduced. In some circumstances legislation to restrict diffuse pollution may provide incentives for more diverse eco-efficient farming and in other circumstances price premia for produce from eco-efficient systems, such as organic farming, and subsidies for the provision of environmental services may provide economic incentives for the adoption of such systems. However, change is likely to be most rapid where the present systems lead to obvious reductions in the productive potential of the land, such as in areas experiencing salinization. In other situations, there is promise that eco-efficiency could be increased on an area-wide basis by the establishment of linkages between farms of contrasting type, particularly between specialist crop and livestock farms, with contracts for the transfer of manures and, to a lesser extent, feeds.


Subject(s)
Agriculture/methods , Animal Husbandry/methods , Crops, Agricultural/growth & development , Ecosystem , Soil/standards , Animal Feed , Animals , Conservation of Natural Resources , Environmental Pollution/prevention & control , Fertilizers , Humans , Manure , Nitrogen/metabolism , Poaceae
5.
Pflugers Arch ; 455(4): 563-73, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17849146

ABSTRACT

Articular cartilage is an avascular tissue dependent on diffusion mainly from synovial fluid to service its metabolic requirements. Levels of oxygen (O(2)) in the tissue are low, with estimates of between 1 and 6%. Metabolism is largely, if not entirely, glycolytic, with little capacity for oxidative phosphorylation. Notwithstanding, the tissue requires O(2) and consumes it, albeit at low rates. Changes in O(2) tension also have profound effects on chondrocytes affecting phenotype, gene expression, and morphology, as well as response to, and production of, cytokines. Although chondrocytes can survive prolonged anoxia, low O(2) levels have significant metabolic effects, inhibiting glycolysis (the negative Pasteur effect), and also notably matrix production. Why this tissue should respond so markedly to reduction in O(2) tension remains a paradox. Ion homeostasis in articular chondrocytes is also markedly affected by the extracellular matrix in which the cells reside. Recent work has shown that ion homeostasis also responds to changes in O(2) tension, in such a way as to produce significant effects on cell function. For this purpose, O(2) probably acts via alteration in levels of reactive oxygen species. We discuss the possibility that O(2) consumption by this tissue is required to maintain levels of ROS, which are then used physiologically as an intracellular signalling device. This postulate may go some way towards explaining why the tissue is dependent on O(2) and why its removal has such marked effects. Understanding the role of oxygen has implications for disease states in which O(2) or ROS levels may be perturbed.


Subject(s)
Cartilage, Articular/metabolism , Oxidative Stress , Oxygen Consumption , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Differentiation , Cell Hypoxia , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Homeostasis , Humans , Hypoxia-Inducible Factor 1/metabolism , Phenotype , Signal Transduction
6.
Acta Physiol (Oxf) ; 190(2): 119-25, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17516935

ABSTRACT

AIMS: In mineralizing tissues such as growth plate cartilage extracellular organelles derived from the chondrocyte membrane are present. These matrix vesicles (MV), possess membrane transporters that accumulate Ca(2+) and inorganic phosphate (P(i)), and initiate the formation of hydroxyapatite crystals. MV are also present in articular cartilage, and hydroxyapatite crystals are believed to promote cartilage degradation in osteoarthritic joints. This study characterizes P(i) transport in MV derived from articular cartilage. METHODS: Matrix vesicles were harvested from collagenase digests of bovine articular cartilage by serial centrifugation. P(i) uptake by MV was measured using radioactive phosphate ((33)[P]HPO(4)(2-)). The Na(+) dependence, pH sensitivity and effects of P(i) analogues that inhibit P(i) transport were determined. RESULTS: P(i) uptake was temperature-sensitive and comprised Na(+)-dependent and Na(+)-independent components. The Na(+)-dependent component saturated at high extracellular P(i) concentrations, with a K(m) of 0.16 mM. In Na(+)-free solutions, uptake did not fully saturate implying that carrier-mediated uptake is supplemented by a diffusive pathway. Uptake was inhibited by phosphonoacetate and arsenate, although a fraction of Na(+)-independent P(i) uptake persisted. Total P(i) uptake was maximal at pH 6.5, and reduced at more acidic or alkaline values, representing inhibition of both components. CONCLUSION: These properties are highly similar to those of P(i) uptake by chondrocytes, suggesting that MV inherit P(i) transporters of the chondrocyte membrane from which they are derived. Na(+)-independent P(i) uptake has not previously been described in MV from growth plate cartilage and is relatively uncharacterized, but warrants further attention in articular cartilage, given its likely role in initiating inappropriate mineral formation.


Subject(s)
Cartilage, Articular/metabolism , Cytoplasmic Vesicles/metabolism , Phosphates/metabolism , Animals , Arsenates/pharmacology , Cartilage, Articular/drug effects , Cattle , Cell Membrane/metabolism , Cytoplasmic Vesicles/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Ion Transport/drug effects , Ion Transport/physiology , Osmolar Concentration , Phosphonoacetic Acid/pharmacology , Sodium/metabolism , Time Factors
7.
Osteoarthritis Cartilage ; 15(7): 735-42, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17306992

ABSTRACT

OBJECTIVE: To examine the effect of O(2) and the role, and source, of reactive oxygen species (ROS) on pH regulation in articular chondrocytes. METHODS: Cartilage from equine metacarpo/tarsophalangeal joints was digested (collagenase) to isolate chondrocytes and loaded with 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein, a pH-sensitive fluorophore. O(2) tension was maintained using Eschweiler tonometers and a Wosthoff gas mixer. Cells were exposed to agents which alter ROS levels, mitochondrial inhibitors and/or inhibitors of protein phosphorylation. ROS levels were determined by dichlorofluorescein and mitochondrial membrane potential measured using JC-1. RESULTS: pH homeostasis was dependent on ROS. Na(+)/H(+) exchanger (NHE) activity was inhibited at low O(2) tension (acid efflux reducing from 2.30+/-0.05 to 1.27+/-0.11mMmin(-1) at 1%). NHE activity correlated with ROS levels (r(2)=0.65). ROS levels were increased by antimycin A (with levels at 1% O(2) tension increasing from 59+/-9% of the value at 20% to 87+/-7%), but reduced by rotenone, myxothiazol and diphenyleneiodonium. Hypoxia induced depolarisation of the mitochondrial membrane potential (with JC-1 red-green fluorescence ratio at 1% O(2) tension decreasing to 40+/-10% of the value at 20%). The response to changes in O(2) and to antimycin A was inhibited by staurosporine, wortmanin and calyculin A. CONCLUSION: The fall in ROS levels in hypoxia reduces the ability of articular chondrocytes to regulate pH, inhibiting NHE activity via changes in protein phosphorylation. The site of ROS generation is likely to be mitochondrial electron transport chain complex III. These effects are important to understanding normal chondrocyte function and response to altered O(2) tension.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Hydrogen-Ion Concentration , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Sodium-Hydrogen Exchangers/metabolism , Animals , Homeostasis/physiology , Horses , Mitochondria
8.
Osteoarthritis Cartilage ; 15(4): 396-402, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17070714

ABSTRACT

OBJECTIVE: Chondrocyte behavior is very sensitive to culture environment such as physical and biochemical conditions. As extracellular pH (pHo) and the existence of bicarbonate could affect the chondrocyte fate, hence, the purpose of this study is to investigate the buffer system effect on chondrocyte fate during relatively long-term culture. METHODS: In order to examine whether effects seen were due to bicarbonate or to pHo, we had to devise a system which could differentiate between the two effects. Culture media buffered by N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES) only and the combination of HEPES and bicarbonate were used. Bovine articular chondrocytes were cultured in alginate beads for up to 12 days. pHo was kept constant by culture of 3 beads in 2 ml culture medium. Cell density, intracellular pH (pHi) and glycosaminoglycan (GAG) were measured at day 5 and day 12. Cell morphology, distribution and viability in alginate beads were monitored over 12 days of culture. RESULTS: Compared to culture in the absence of bicarbonate, a higher proliferation rate of chondrocytes was observed in the presence of bicarbonate. pHi was more alkaline, about 0.2 pH unit, in the presence of bicarbonate than that in the absence of bicarbonate. About 50% more GAG was deposited in alginate beads when chondrocytes were cultured in the combination of HEPES and bicarbonate, compared to chondrocytes cultured in the absence of NaHCO3 at the end of 12 days of culture. CONCLUSION: The presence of bicarbonate results in more alkaline in the pHi of bovine chondrocytes after long-term culture. The combination of bicarbonate and HEPES in culture medium improves cell growth, matrix production in three-dimensional alginate beads.


Subject(s)
Cells, Cultured , Chondrocytes , Alginates , Cell Culture Techniques , HEPES , Humans , Sodium Bicarbonate
9.
Arthritis Rheum ; 54(11): 3523-32, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17075856

ABSTRACT

OBJECTIVE: To determine the effects of varying O(2) on pH homeostasis, based on the hypothesis that the function of articular chondrocytes is best understood at realistic O(2) tensions. METHODS: Cartilage from equine metacarpophalangeal/tarsophalangeal joints was digested with collagenase to isolate chondrocytes, and then loaded with the pH-sensitive fluorophore 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein. The radioisotope(22)Na(+) was used to determine the kinetics of Na(+)/H(+) exchange (NHE) and the activity of the Na(+)/K(+) pump, and ATP levels were assessed with luciferin assays. Levels of reactive oxygen species (ROS) were determined using 2',7'-dichlorofluorescein diacetate. RESULTS: The pH homeostasis was unaffected when comparing tissue maintained at 20% O(2) (the level in water-saturated air at 37 degrees C) with that at 5% O(2) (which approximates the normal level in healthy cartilage); however, an O(2) tension of <5% caused a fall in intracellular pH (pH(i)) and slowed pH(i) recovery following acidification, an effect mediated via inhibition of NHE activity (likely through acid extrusion by NHE isoform 1). The Na(+)/K(+) pump activity and intracellular ATP concentration were unaffected by hypoxia, but the levels of ROS were reduced. Hypoxic inhibition of NHE activity and the reduction in ROS levels were reversed by treatment with H(2)O(2), Co(2+), or antimycin A. Treatment with calyculin A also prevented hypoxic inhibition of NHE activity. CONCLUSION: The ability of articular chondrocytes to carry out pH homeostasis is compromised when O(2) tensions fall below those normally experienced, via inhibition of NHE. The putative signal is a reduction in levels of ROS derived from mitochondria, acting via altered protein phosphorylation. This effect is relevant to both physiologic and pathologic states of lowered O(2), such as in chronic inflammation.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/metabolism , Homeostasis/physiology , Hydrogen-Ion Concentration , Oxygen/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Hypoxia/physiology , Chondrocytes/drug effects , Enzyme Inhibitors/pharmacology , Homeostasis/drug effects , Horses , Marine Toxins , Oxazoles/pharmacology , Oxygen/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Sodium-Hydrogen Exchangers/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
10.
J Endocrinol ; 191(2): 415-25, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17088411

ABSTRACT

Mammalian hair growth is cyclic, with hair-producing follicles alternating between active (anagen) and quiescent (telogen) phases. The timing of hair cycles is advanced in prolactin receptor (PRLR) knockout mice, suggesting that prolactin has a role in regulating follicle cycling. In this study, the relationship between profiles of circulating prolactin and the first post-natal hair growth cycle was examined in female Balb/c mice. Prolactin was found to increase at 3 weeks of age, prior to the onset of anagen 1 week later. Expression of PRLR mRNA in skin increased fourfold during early anagen. This was followed by upregulation of prolactin mRNA, also expressed in the skin. Pharmacological suppression of pituitary prolactin advanced dorsal hair growth by 3.5 days. Normal hair cycling was restored by replacement with exogenous prolactin for 3 days. Increasing the duration of prolactin treatment further retarded entry into anagen. However, prolactin treatments, which began after follicles had entered anagen at 26 days of age, did not alter the subsequent progression of the hair cycle. Skin from PRLR-deficient mice grafted onto endocrine-normal hosts underwent more rapid hair cycling than comparable wild-type grafts, with reduced duration of the telogen phase. These experiments demonstrate that prolactin regulates the timing of hair growth cycles in mice via a direct effect on the skin, rather than solely via the modulation of other endocrine factors.


Subject(s)
Hair/growth & development , Prolactin/pharmacology , Receptors, Prolactin/metabolism , Animals , Biomarkers/analysis , Depression, Chemical , Domperidone/pharmacology , Dopamine Antagonists/pharmacology , Female , Gene Expression , Genotype , Hair/drug effects , Hair Dyes , Hair Removal , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , Prolactin/blood , Prolactin/genetics , Proliferating Cell Nuclear Antigen/analysis , RNA, Messenger/analysis , Radioimmunoassay/methods , Receptors, Prolactin/analysis , Receptors, Prolactin/genetics , Skin/chemistry , Skin/metabolism , Skin Transplantation
11.
Biorheology ; 41(3-4): 299-308, 2004.
Article in English | MEDLINE | ID: mdl-15299262

ABSTRACT

The intracellular milieu of chondroctyes is regulated by an array of proteins in the cell membrane which operate as transport pathways, allowing ions and nutrients such as glucose and amino acids and metabolites such as lactate to cross the plasma membrane. Here we investigated the influence of hydrostatic pressure on intracellular calcium concentrations ([Ca(2+)](i)) in isolated bovine articular chondrocytes. We found that short applications of high hydrostatic pressures led to a significant increase in [Ca(2+)](i). The pressure-induced rise was abolished for long (240 sec) but not short (30 sec) pressure applications by removal of extracellular Ca(2+). The rise in pressure was also blocked by the inhibitors neomycin and thapsigargin confirming that pressure, by generating IP(3), led to an increase in [Ca(2+)](i) by mobilising the pool of Ca(2+) ions contained within intracellular stores. We also found that intracellular [Na(+)] was affected by a rise in osmotic pressure and further affected by application of hydrostatic pressure. The effect of hydrostatic pressure on sulphate incorporation depended strongly on extracellular osmolality. Since significant gradients in extracellular osmolality exist across intact cartilage, the results imply that responses of chondrocytes to the same pressure will vary depending on location in the joint. The results also indicate that hydrostatic pressures can affect several different transporter systems thus influencing the intracellular milieu and chondrocyte metabolism.


Subject(s)
Cartilage, Articular , Chondrocytes/metabolism , Intracellular Fluid/metabolism , Ion Transport , Mechanotransduction, Cellular , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Cattle , Cell Line , Humans , Hydrostatic Pressure , Neomycin/pharmacology , Osmotic Pressure , Sodium/metabolism , Sulfates/metabolism , Thapsigargin/pharmacology
12.
Article in English | MEDLINE | ID: mdl-15123214

ABSTRACT

The maintenance of chondrocyte pH is an important parameter controlling cartilage matrix turnover rates. Previous studies have shown that, to varying degrees, chondrocytes rely on Na(+)/H(+) exchange to regulate pH. HCO(3)(-)-dependent buffering and HCO(3)(-)-dependent acid-extrusion systems seem to play relatively minor roles. This situation may reflect minimal carbonic anhydrase activity in cartilage cells. In the present study, the pH regulation of the human chondrocyte cell line, C-20/A4 has been characterised. Intracellular pH (pH(i)) was measured using the H(+)-sensitive fluoroprobe BCECF. In solutions lacking HCO(3)(-)/CO(2), pH(i) was approximately 7.5, and the recovery from intracellular acidification was predominantly mediated by a Na(+)-dependent, amiloride- and HOE 694-sensitive process. A small additional component which was sensitive to chloro-7-nitrobenz-2-oxa-1,3-diazole, an inhibitor of the V-type H(+)-ATPase, was also apparent. In solutions containing HCO(3)(-)/CO(2), pH(i) was approximately 7.2. Comparison of buffering capacity in the two conditions showed that this variable was not significantly augmented in HCO(3)(-)/CO(2)-containing media. The recovery from intracellular acidification was more rapid in the presence of HCO(3)(-)/CO(2), although under these conditions it was again largely dependent on Na(+) ions and inhibited by amiloride and HOE 694. A small component was inhibited by SITS, although this effect did not reach the level of statistical significance. These findings indicate that HCO(3)(-)-dependent processes play only a minimal role in pH regulation in C-20/A4 chondrocytes. pH regulation instead relies heavily on the Na(+)/H(+) exchanger together with a H(+)-ATPase. The absence of extrinsic (HCO(3)(-)/CO(2)) buffering is likely to reflect the low levels of carbonic anhydrase in these cells. In addition to providing fundamental information about a widely-used cell line, these findings support the contention that the unusual nature of pH regulation in chondrocytes reflects the paucity of carbonic anhydrase activity in these cells.


Subject(s)
Chondrocytes/chemistry , Hydrogen-Ion Concentration , Acidosis/metabolism , Amiloride/pharmacology , Bicarbonates/pharmacology , Buffers , Cell Line , Chondrocytes/metabolism , Guanidines/pharmacology , HEPES/pharmacology , Homeostasis/drug effects , Humans , Sodium/metabolism , Sulfones/pharmacology
13.
Bioelectrochemistry ; 62(2): 195-8, 2004 May.
Article in English | MEDLINE | ID: mdl-15039027

ABSTRACT

We have studied the effects of anti-GLUT1 antibodies on the uptake of glucose into erythrocytes. Glucose transport into human erythrocyte ghosts was measured directly using 3H-2-deoxy-glucose, or indirectly by monitoring associated volume changes using light scattering. The uptake of glucose was significantly inhibited in ghosts resealed in solutions containing specific antibodies against GLUT1. Such an effect was not observed when an antibody against the oestrogen receptor, lacking specificity towards GLUT1, was employed instead. The antibodies were also without effect on the efflux of preloaded glucose from erythrocyte ghosts. The demonstration that anti-GLUT antibodies can inhibit glucose uptake is support for the hypothesis that they exaggerate the cytoplasmic barrier to glucose uptake created by endofacial segments of GLUT1.


Subject(s)
Antibodies, Monoclonal/pharmacology , Erythrocyte Membrane/metabolism , Monosaccharide Transport Proteins/immunology , Antibody Specificity , Cell Size , Epitopes , Erythrocyte Membrane/drug effects , Glucose/metabolism , Glucose Transporter Type 1 , Humans , Kinetics
14.
J Dairy Sci ; 86(8): 2598-611, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12939084

ABSTRACT

Silages prepared from pure stands of ryegrass, alfalfa, white clover, and red clover over two successive year were offered to lactating dairy cows in two feeding experiments. Proportional mixtures of all cuts prepared in a yr were used to ensure that the forage treatments were representative of the crop. Additional treatments involved mixtures of grass silage with either white clover silage or red clover silage (50/50, on a DM basis). Silages were prepared in round bales, using a biological inoculant additive, and wilting for up to 48 h. Although the legumes were less suited to silage-making than grass, because of their higher buffering capacity and lower water-soluble carbohydrate content, all silages were well-fermented. A standard concentrate was offered at a flat-rate (8 kg/d in yr 1, and 4 or 8 kg/d in yr 2). All of the legume silages led to higher DM intake and milk yields than for the grass silage, with little effect on milk composition. Intake and production responses to legumes were similar at the two levels of concentrate feeding and with forage mixtures they were intermediate to those for the separate forages. An additional benefit of the clover silages, particularly red clover silage, was the increase in levels of polyunsaturated fatty acids, particularly alpha-linolenic acid, in milk. Legume silages also led to a lower palmitic acid percentage in milk. The efficiency of conversion of feed N into milk N declined with increasing levels of legume silage. White clover silage led to a higher N-use efficiency when the effect of N intake level is taken into account.


Subject(s)
Cattle/physiology , Fabaceae , Lactation/metabolism , Milk/metabolism , Poaceae , Silage , Animal Nutritional Physiological Phenomena , Animals , Cattle/metabolism , Cross-Over Studies , Dairying/methods , Fabaceae/chemistry , Fats/analysis , Female , Milk/chemistry , Milk Proteins/analysis , Nitrogen/metabolism , Poaceae/chemistry , Random Allocation , Silage/analysis
15.
J Dairy Sci ; 86(8): 2612-21, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12939085

ABSTRACT

Two experiments were conducted to investigate the basis for higher voluntary intakes and increased alpha-linolenic acid content in milk from cows offered clover silages. Six cows with rumen and duodenal cannulae were used in a four-period changeover-design experiment. Cows received 8 kg/d of dairy concentrate and had ad libitum access to one of six silage treatments: grass, red clover, white clover, alfalfa, and 50/50 (dry matter basis) mixtures of grass with red clover or white clover. The rumen fermentability of grass, red clover, white clover, and grass/red clover silages was also evaluated in a nylon bag study. Legume silages led to increased dry matter intake and milk production in comparison with grass silage. There was no significant effect of legume silages on rumen pH and volatile fatty acid concentrations, but a significant increase in rumen ammonia concentration with the legume silages, reflecting their higher protein content. The inclusion of white clover or alfalfa silage, but not red clover silage, in diets led to an increase in molar proportions of isobutyric, iso-valeric, and n-valeric acids in comparison with diets based on grass silage. Rumen fill was significantly lower, and rumen passage rates were significantly higher for cows offered alfalfa or white clover silages. However, the markedly different particle size distribution of rumen contents with these feeds suggests very different mechanisms for the high intake characteristics: high rates of particle breakdown and passage with alfalfa, and high rates of fermentation and passage with white clover. Microbial energetic efficiency (grams microbial N per kilogram organic matter apparently digested in the rumen) was highest for cows offered alfalfa silage, intermediate for clover silage, and lowest for cows offered grass silage. These differences reflect the higher rumen outflow rates for legume silages in comparison with grass silage. However, the effect of these differences on N-use efficiency (feed to milk) was probably quite small in comparison with effects of N intake. Although the biohydrogenation of alpha-linolenic acid was still high for red clover silage (86.1% compared with 94.3% for grass silage), there was a 240% increase in the proportion of alpha-linolenic acid passing through the rumen. This explains the increased recovery of alpha-linolenic acid from feed into milk with diets based on red clover silage.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Lactation/metabolism , Medicago , Milk/chemistry , Rumen/metabolism , Silage , Animal Feed , Animals , Cattle/metabolism , Eating , Fatty Acids, Volatile/analysis , Female , Fermentation , Medicago/chemistry , Medicago sativa/chemistry , Milk/metabolism , Poaceae/chemistry , Rumen/physiology , Silage/analysis , alpha-Linolenic Acid
16.
Article in English | MEDLINE | ID: mdl-12890547

ABSTRACT

Chondrocytes inhabit an unusual environment, in which they are repeatedly subjected to osmotic challenges as fluid is expressed from the extracellular matrix during static joint loading. In the present study, the effects of hypotonic shock on intracellular pH, pH(i), have been studied in isolated bovine articular chondrocytes using the pH-sensitive fluroprobe BCECF. Cells subjected to a 50% dilution rapidly alkalinised, by approximately 0.2 pH units, a sustained plateau being achieved within 300 s. The effect was not altered by inhibitors of pH regulators, such as amiloride, bafilomycin and SITS, but was absent when cells were subjected to hypotonic shocks in solutions in which Na(+) ions were replaced by NMDG(+). The response was found to be sensitive to Gd(3+) ions, blockers of stretch-activated cation channels. Alkalinisation was also inhibited by treatment with Zn(2+) ions, at a concentration reported to block voltage-activated H(+) channels (VAHC). Depolarisation using high K(+) solutions supplemented with valinomycin also induced intracellular alkalinisation. Measurements using a membrane potential (E(m)) fluorescent dye showed that E(m) was approximately -44 mV, but was depolarised by over 50 mV following HTS. The depolarisation was also inhibited by Na(+) substitution with NMDG(+) or treatment with Gd(3+). We conclude that in response to HTS the opening of a stretch-activated cation channel leads to Na(+) influx, which results in a membrane depolarisation. Subsequent activation of VAHC permits H(+) ion efflux along the prevailing electrochemcial gradient, leading to the alkalinisation, which we record.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Hydrogen/metabolism , Hypotonic Solutions/pharmacology , Intracellular Membranes/metabolism , Alkalies/metabolism , Animals , Cartilage, Articular/cytology , Cartilage, Articular/physiology , Cations/metabolism , Cattle , Chondrocytes/physiology , Electrophysiology , Fluoresceins , Fluorescent Dyes , Hydrogen-Ion Concentration , Ion Channels/metabolism , Membrane Potentials , Sodium/metabolism , Stress, Mechanical
17.
Equine Vet J ; 35(5): 439-43, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12875320

ABSTRACT

REASONS FOR PERFORMING STUDY: Ca2+ homeostasis in articular chondrocytes affects synthesis and degradation of the cartilage matrix, as well as other cellular functions, thereby contributing to joint integrity. Although it will be affected by mechanical loading, the sensitivity of intracellular Ca2+ concentration ([Ca2+]i) in equine articular chondrocytes to many stimuli remains unknown. HYPOTHESIS: An improved understanding of Ca2+ homeostasis in equine articular chondrocytes, and how it is altered during joint loading and pathology, will be important in understanding how joints respond to mechanical loads. METHODS: [Ca2+]i was determined using the fluorophore fura-2. We examined the effects of hypotonic shock, a perturbation experienced in vivo during mechanical loading cycles. We used inhibitors of Ca2+ transporters to ascertain the important factors in Ca2+ homeostasis. RESULTS: Under isotonic conditions, [Ca2+]i was 148 +/- 23 nmol/l, increasing by 216 +/- 66 nmol/l in response to reduction in extracellular osmolality of 50%. Resting [Ca2+]i, and the increase following hypotonic shock, were decreased by Ca2+ removal; they were both elevated when extracellular [Ca2+] ([Ca2+]o) was raised or following Na+ removal. The hypotonicity-induced rise in [Ca2+]i was inhibited by exposure of cells to gadolinium (Gd3+; 10 micromol/l), an inhibitor of mechanosensitive channels. [Ca2+]i was also elevated following treatment of cells with thapsigargin (10 micromol/l), an inhibitor of the Ca2+ pump of intracellular stores. CONCLUSIONS: A model is presented which interprets these findings in relation to Ca2+ homeostasis in equine articular chondrocytes, including the presence of mechanosensitive channels allowing Ca2+ entry, a Na+/Ca2+ exchanger for removal of intracellular Ca2+ and intracellular stores sensitive to thapsigargin. POTENTIAL RELEVANCE: A more complete understanding of Ca2+ homeostasis in equine chondrocytes may allow development of future therapeutic regimes to ameliorate joint disease.


Subject(s)
Calcium/metabolism , Cartilage, Articular/physiology , Chondrocytes/metabolism , Horses/physiology , Animals , Calcium-Transporting ATPases/antagonists & inhibitors , Cartilage, Articular/cytology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Gadolinium/pharmacology , Homeostasis , Hypotonic Solutions , Models, Biological , Osmolar Concentration , Thapsigargin/pharmacology
18.
Cryobiology ; 46(2): 161-73, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12686206

ABSTRACT

The addition and removal of a cryoprotective agent (CPA) are necessary steps in the cryopreservation of natural or engineered tissue products. However, the introduction and removal of CPAs induces dramatic chemical changes inside tissues and cells and these could cause irreversible damage. This study examined the effect of CPA loading and removal on the intracellular pH of isolated bovine articular chondrocytes using a fluorimetric technique. Chondrocytes that had been isolated from bovine articular cartilage were loaded with the pH-sensitive fluorophore 2('),7(')-bis(carboxyethyl)-5(6)-carboxyfluorescein. After removal of the extracellular fluorophore, the intensity of fluorescence was used to measure the intracellular pH according to a pre-determined calibration curve. Changes of intracellular pH in chondrocytes were measured following their exposure to dimethyl sulfoxide (Me(2)SO) and glycerol at concentrations of 0.6, 0.9, and 1.2M and later to the isotonic or hypertonic solutions that were used to remove the CPA. The effect of the presence of NaCl on the intracellular pH during CPA removal was also examined. The temperature was maintained at 37 degrees C. Trypan blue exclusion was used to quantify cell membrane integrity after the addition and removal of CPA. It was found that when the cells were exposed to CPA, the intracellular pH decreased quickly and recovered gradually later. During CPA removal, the intracellular pH rose following exposure to isotonic Hepes-buffered medium, but the opposite was observed if the Hepes buffer solution contained no NaCl; this was ascribed to the role of NaCl in cell membrane transport. It was noted that the change in intracellular pH correlated with the cell volume excursion, which could be estimated by the Kedem-Katchalsky model, and was linked to cell survival. The resulting alteration of pH inside the cells might contribute to cell damage and loss of function after cryopreservation.


Subject(s)
Chondrocytes/chemistry , Cryopreservation , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Animals , Buffers , Cattle , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Cells, Cultured , Chondrocytes/drug effects , Cryopreservation/methods , Dimethyl Sulfoxide/pharmacology , Glycerol/pharmacology , Hydrogen-Ion Concentration/drug effects , Kinetics , Metacarpophalangeal Joint/cytology , Models, Biological , Saline Solution, Hypertonic/pharmacology
19.
Gen Physiol Biophys ; 22(4): 487-500, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15113121

ABSTRACT

The extracellular osmotic environment of chondrocytes fluctuates during joint loading as fluid is expressed from and reimbibed by the extracellular matrix. Matrix synthesis by chondrocytes is modulated by joint loading, possibly mediated by variations in intracellular composition. The present study has employed the Ca2+-sensitive fluoroprobe Fura-2 to determine the effects of hypotonic shock (HTS) on intracellular Ca2+ concentration ([Ca2+]i) and to characterise the mechanisms involved in the response for isolated bovine articular chondrocytes. In cells subjected to a 50% dilution, [Ca2+]i rapidly increased by approximately 250%, a sustained plateau being achieved within 300 s. The effect was inhibited by thapsigargin or by removal of extracellular Ca2+, indicating that the rise in [Ca2+]i reflects both influx from the extracellular medium and release from intracellular stores. Inhibition of the response by neomycin implicates activation of PLC and IP3 synthesis in the mobilisation of Ca2+ from intracellular stores. The rise was insensitive to inhibitors of L-type voltage-activated Ca2+ channels (LVACC) or reverse mode Na+/Ca2+ exchange (NCE) but could be significantly attenuated by ruthenium red, an inhibitor of transient receptor potential vanilloid (TRPV) channels and by Gd3+, a blocker of stretch-activated cation (SAC) channels. The HTS-induced rise in [Ca2+]i was almost completely absent in cells treated with Ni2+, a non-specific inhibitor of Ca2+ entry pathways. We conclude that in response to HTS the opening of SACC and a member of TRPV channel family leads to Ca2+ influx, simultaneously with the release from intracellular stores.


Subject(s)
Calcium Channels/physiology , Calcium/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Intracellular Space/metabolism , Adaptation, Physiological/physiology , Animals , Calcium Channels/drug effects , Cartilage, Articular/drug effects , Cattle , Cells, Cultured , Chondrocytes/drug effects , Gadolinium/pharmacology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Osmotic Pressure , Receptors, Drug , Ruthenium/pharmacology
20.
J Membr Biol ; 186(3): 113-29, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-12148839

ABSTRACT

The effects of raised hydraulic pressure on D-glucose exit from human red cells at 25 degrees C were determined using light scattering measurements in a sealed pressurized spectrofluorimeter cuvette. The reduction in the rates of glucose exit with raised pressure provides an index of the activation volume, deltaV++ (delta ln k/deltaP)(T) = -deltaV++/RT. Raised pressure decreased the rate constant of glucose exit from 0.077 +/- 0.003 s(-1) to 0.050 +/- 0.002 s(-1) (n = 5, P < 0.003). The Ki for glucose binding to the external site was 2.7 +/- 0.4 mm (0.1 MPa) and was reduced to 1.45 +/- 0.15 mm (40 MPa), (P < 0.01, Student's t test). Maltose had a biphasic effect on deltaV++. At [maltose] <250 microM, deltaV++ of glucose exit increased above that with [maltose = 0 mM], at >1 mm maltose, deltaV++ was reduced below that with [maltose = 0 mM]. Pentobarbital (2 mM) decreased the deltaV++ of net glucose exit into glucose-free solution from 30 +/- 5 ml mol(-1) (control) to 2 +/- 0.5 ml mol(-1) (P < 0.01). Raised pressure had a negligible effect on L-sorbose exit. These findings suggest that stable hydrated and liganded forms of GLUT with lower affinity towards glucose permit higher glucose mobilities across the transporter and are modelled equally well with one-alternating or a two-fixed-site kinetic models.


Subject(s)
Blood Glucose/metabolism , Computer Simulation , Erythrocytes/metabolism , Models, Biological , Monosaccharide Transport Proteins/metabolism , Water/metabolism , Biological Transport , Erythrocytes/drug effects , Glucose Transporter Type 1 , Humans , In Vitro Techniques , Models, Chemical , Pentobarbital/administration & dosage , Pressure , Sensitivity and Specificity , Sorbose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL