Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Opin Clin Nutr Metab Care ; 27(5): 451-456, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39076141

ABSTRACT

PURPOSE OF REVIEW: Dietary proteins are broken down into peptides across the gastrointestinal tract, with skeletal muscle being a primary deposition site for amino acids in the form of incorporation into, for example, metabolic and structural proteins. It follows that key research questions remain as to the role of amino acid bioavailability, of which protein digestibility and splanchnic sequestration (absorption and utilization) of amino acids are determining factors, impact upon muscle protein synthesis (MPS) in clinical states. RECENT FINDINGS: Elevated splanchnic amino acid uptake has been implicated in anabolic resistance (i.e. attenuated anabolic responses to protein intake) observed in ageing, though it is unclear whether this limits MPS. The novel 'dual stable isotope tracer technique' offers a promising, minimally invasive approach to quantify the digestion of any protein source(s). Current work is focused on the validation of this technique against established methods, with scope to apply this to clinical and elderly populations to help inform mechanistic and interventional insights. SUMMARY: Considerations should be made for all facets of protein quality; digestibility of the protein, absorption/utilization and subsequent peripheral bioavailability of amino acids, and resultant stimulation of MPS. Stable isotope tracer techniques offer a minimally invasive approach to achieve this, with wide-ranging clinical application.


Subject(s)
Amino Acids , Biological Availability , Dietary Proteins , Digestion , Humans , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Digestion/physiology , Amino Acids/metabolism , Muscle, Skeletal/metabolism , Muscle Proteins/metabolism , Splanchnic Circulation/physiology , Isotope Labeling/methods , Intestinal Absorption/physiology
2.
Gut Microbes ; 14(1): 2152306, 2022.
Article in English | MEDLINE | ID: mdl-36469575

ABSTRACT

Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter Infections/microbiology , Stomach/microbiology , Genomics
3.
Eur J Sport Sci ; 19(7): 952-963, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30741116

ABSTRACT

Skeletal muscle has indispensable roles in regulating whole body health (e.g. glycemic control, energy consumption) and, in being central in locomotion, is crucial in maintaining quality-of-life. Therefore, understanding the regulation of muscle mass is of significant importance. Resistance exercise training (RET) combined with supportive nutrition is an effective strategy to achieve muscle hypertrophy by driving chronic elevations in muscle protein synthesis (MPS). The regulation of muscle protein synthesis is a coordinated process, in requiring ribosomes to translate mRNA and sufficient myonuclei density to provide the platform for ribosome and mRNA transcription; as such MPS is determined by both translational efficiency (ribosome activity) and translational capacity (ribosome number). Moreover, as the muscle protein pool expands during hypertrophy, translation capacity (i.e. ribosomes and myonuclei content) could theoretically become rate-limiting such that an inability to expand these pools through ribosomal biogenesis and satellite cell (SC) mediated myonuclear addition could limit growth potential. Simple measures of RNA (ribosome content) and DNA (SC/Myonuclei number) concentrations reveal that these pools do increase with hypertrophy; yet whether these adaptations are a pre-requisite or a limiting factor for hypertrophy is unresolved and highly debated. This is primarily due to methodological limitations and many assumptions being made on static measures or correlative associations. However recent advances within the field using stable isotope tracers shows promise in resolving these questions in muscle adaptation.


Subject(s)
Hypertrophy/physiopathology , Muscle, Skeletal/physiopathology , Protein Biosynthesis/physiology , Ribosomes/physiology , Humans , Muscle Development/physiology , Resistance Training , Signal Transduction
4.
Mass Spectrom Rev ; 37(1): 57-80, 2018 01.
Article in English | MEDLINE | ID: mdl-27182900

ABSTRACT

Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13 C), nitrogen (15 N), oxygen (18 O), and hydrogen (2 H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to "trace" the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC-MS to LC-MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level. Importantly, it will detail how this development has been closely aligned to the technological development within the area of mass spectrometry. Without the dedicated development provided by these mass spectrometrists over the past century, the use of stable isotope tracers within the field of protein metabolism would not be as widely applied as it is today, this relationship will no doubt continue to flourish in the future and stable isotope tracers will maintain their importance as a tool within the biological sciences for many years to come. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Mass Spec Rev.


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Proteins/metabolism , Animals , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Deuterium/analysis , Deuterium/metabolism , Equipment Design , History, 20th Century , History, 21st Century , Humans , Isotope Labeling/history , Isotope Labeling/instrumentation , Mass Spectrometry/history , Mass Spectrometry/instrumentation , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Oxygen Isotopes/analysis , Oxygen Isotopes/metabolism , Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL