Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 4(1): 34, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606841

ABSTRACT

BACKGROUND: Animal-associated microbiomes can be influenced by both host and environmental factors. Comparing wild animals to those in zoos or aquariums can help disentangle the effects of host versus environmental factors, while also testing whether managed conditions foster a 'natural' host microbiome. Focusing on an endangered elasmobranch species-the whitespotted eagle ray Aetobatus narinari-we compared the skin, gill, and cloaca microbiomes of wild individuals to those at Georgia Aquarium. Whitespotted eagle ray microbiomes from Georgia Aquarium were also compared to those of cownose rays (Rhinoptera bonasus) in the same exhibit, allowing us to explore the effect of host identity on the ray microbiome. RESULTS: Long-term veterinary monitoring indicated that the rays in managed care did not have a history of disease and maintained health parameters consistent with those of wild individuals, with one exception. Aquarium whitespotted eagle rays were regularly treated to control parasite loads, but the effects on animal health were subclinical. Microbiome α- and ß-diversity differed between wild versus aquarium whitespotted eagle rays at all body sites, with α-diversity significantly higher in wild individuals. ß-diversity differences in wild versus aquarium whitespotted eagle rays were greater for skin and gill microbiomes compared to those of the cloaca. At each body site, we also detected microbial taxa shared between wild and aquarium eagle rays. Additionally, the cloaca, skin, and gill microbiomes of aquarium eagle rays differed from those of cownose rays in the same exhibit. Potentially pathogenic bacteria were at low abundance in all wild and aquarium rays. CONCLUSION: For whitespotted eagle rays, managed care was associated with a microbiome differing significantly from that of wild individuals. These differences were not absolute, as the microbiome of aquarium rays shared members with that of wild counterparts and was distinct from that of a cohabitating ray species. Eagle rays under managed care appear healthy, suggesting that their microbiomes are not associated with compromised host health. However, the ray microbiome is dynamic, differing with both environmental factors and host identity. Monitoring of aquarium ray microbiomes over time may identify taxonomic patterns that co-vary with host health.

2.
Anim Microbiome ; 3(1): 61, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526135

ABSTRACT

Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch-microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.

3.
PLoS One ; 12(10): e0186265, 2017.
Article in English | MEDLINE | ID: mdl-29053728

ABSTRACT

After the Deepwater Horizon (DWH) oil spill began in April 2010, studies were initiated on northern Gulf of Mexico common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound (MSS) to determine density, abundance, and survival, during and after the oil spill, and to compare these results to previous research in this region. Seasonal boat-based photo-identification surveys (2010-2012) were conducted in a section of MSS to estimate dolphin density and survival, and satellite-linked telemetry (2013) was used to determine ranging patterns. Telemetry suggested two different ranging patterns in MSS: (1) inshore waters with seasonal movements into mid-MSS, and (2) around the barrier islands exclusively. Based upon these data, dolphin density was estimated in two strata (Inshore and Island) using a spatially-explicit robust-design capture-recapture model. Inshore and Island density varied between 0.77-1.61 dolphins km-2 ([Formula: see text] = 1.42, 95% CI: 1.28-1.53) and 3.32-5.74 dolphins km-2 ([Formula: see text] = 4.43, 95% CI: 2.70-5.63), respectively. The estimated annual survival rate for dolphins with distinctive fins was very low in the year following the spill, 0.73 (95% CI: 0.67-0.78), and consistent with the occurrence of a large scale cetacean unusual mortality event that was in part attributed to the DWH oil spill. Fluctuations in density were not as large or seasonally consistent as previously reported. Total abundance for MSS extrapolated from density results ranged from 4,610 in July 2011 to 3,046 in January 2012 ([Formula: see text] = 3,469, 95% CI: 3,113-3,725).


Subject(s)
Bottle-Nosed Dolphin/physiology , Petroleum Pollution , Animals , Gulf of Mexico , Population Density
4.
PLoS One ; 9(9): e106644, 2014.
Article in English | MEDLINE | ID: mdl-25198161

ABSTRACT

Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.


Subject(s)
Androgens/toxicity , Cyprinodontiformes , Environmental Exposure , Gene Expression , Industrial Waste , Progesterone/toxicity , Water Pollutants, Chemical/toxicity , Animals , Florida , Transcriptome , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...