Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 13: 1023441, 2023.
Article in English | MEDLINE | ID: mdl-36936775

ABSTRACT

Extensive intestinal resection leads to Short Bowel Syndrome (SBS), the main cause of chronic intestinal failure. Colon preservation is crucial for spontaneous adaptation, to improve absorption and reduce parenteral nutrition dependence. Fecal microbiota transplantation (FMT), a promising approach in pathologies with dysbiosis as the one observed in SBS patients, was assessed in SBS rats with jejuno-colonic anastomosis. The evolution of weight and food intake, the lenght of intestinal villi and crypts and the composition of fecal microbiota of Sham and SBS rats, transplanted or not with high fat diet rat microbiota, were analyzed. All SBS rats lost weight, increased their food intake and exhibited jejunal and colonic hyperplasia. Microbiota composition of SBS rats, transplanted or not, was largely enriched with Lactobacillaceae, and α- and ß-diversity were significantly different from Sham. The FMT altered microbiota composition and α- and ß-diversity in Sham but not SBS rats. FMT from high fat diet rats was successfully engrafted in Sham, but failed to take hold in SBS rats, probably because of the specific luminal environment in colon of SBS subjects favoring aero-tolerant over anaerobic bacteria. Finally, the level of food intake in SBS rats was positively correlated with their Lactobacillaceae abundance. Microbiota transfer must be optimized and adapted to this specific SBS environment.


Subject(s)
Short Bowel Syndrome , Rats , Animals , Short Bowel Syndrome/therapy , Short Bowel Syndrome/microbiology , Short Bowel Syndrome/pathology , Rodentia , Fecal Microbiota Transplantation , Intestinal Mucosa/pathology , Jejunum
2.
J Clin Med ; 12(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36902635

ABSTRACT

Sleeve gastrectomy (SG) often induces gastroesophageal reflux, with few and discordant long-term data on the risk of Barrett's esophagus (BE) in operated patients. The aim of this study was to analyze the impact of SG on esogastric mucosa in a rat model at 24 weeks postoperatively, which corresponds to approximately 18 years in humans. After 3 months of a high-fat diet, obese male Wistar rats were subjected to SG (n = 7) or sham surgery (n = 9). Esophageal and gastric bile acid (BA) concentrations were measured at sacrifice, at 24 weeks postoperatively. Esophageal and gastric tissues were analyzed by routine histology. The esophageal mucosa of the SG rats (n = 6) was not significantly different in comparison to that of the sham rats (n = 8), with no esophagitis or BE. However, there was more antral and fundic foveolar hyperplasia in the mucosa of the residual stomach 24 weeks after SG than in the sham group (p < 0.001). Luminal esogastric BA concentrations did not differ between the two groups. In our study, SG induced gastric foveolar hyperplasia but no esophageal lesions at 24 weeks postoperatively in obese rats. Therefore, long-term endoscopic esophageal follow-up that is recommended in humans after SG to detect BE may also be useful for detecting gastric lesions.

3.
Obes Surg ; 33(4): 1121-1132, 2023 04.
Article in English | MEDLINE | ID: mdl-36729363

ABSTRACT

PURPOSE: Sleeve gastrectomy with transit bipartition (SG-TB) could be an attractive alternative to Roux-en-Y gastric bypass (RYGB) on weight loss and improvement of comorbidities in patients with obesity. However, there is little long-term data. Translational research on a rat model could allow long-term projection to assess efficacy and safety of SG-TB. The aim of this research was to evaluate the long-term efficacy and safety of SG-TB compared to RYGB and SHAM in rat model. MATERIALS AND METHODS: Ninety-four male obese Wistar rats were distributed into 3 groups: SG-TB (n = 34), RYGB (n = 32), and SHAM (control group, n = 28). The percentage of total weight loss (%TWL), coprocalorimetry, glucose and insulin tolerance test, insulin, GLP-1, PYY, and GIP before and after surgery were assessed. The animals were followed over 6 months (equivalent to 16 years in humans). RESULTS: At 6 months, %TWL was significantly greater(p = 0.025) in the SG-TB group compared to the RYGB group. There was no difference between the groups (p = 0.86) in malabsorption 15 and 120 days postoperatively. Glucose tolerance was significantly improved (p = 0.03) in the SG-TB and RYGB groups compared to the preoperative state. Insulin secretion, at 3 months, was significantly more important in the SG-TB group (p = 0.0003), compared to the RYGB and SHAM groups. GLP-1 secretion was significantly increased in the SG-TB and RYGB groups compared to the preoperative state (p = 0.001) but similar between SG-TB and RYGB animals (p = 0.72). CONCLUSION: In a rat model, at long term compared to RYGB, SG-TB provides greater and better-maintained weight loss and an increased insulin secretion without impairing nutritional status.


Subject(s)
Gastric Bypass , Obesity, Morbid , Humans , Male , Rats , Animals , Obesity, Morbid/surgery , Nutritional Status , Rats, Wistar , Obesity/surgery , Insulin , Glucagon-Like Peptide 1 , Gastrectomy , Glucose , Weight Loss , Retrospective Studies , Treatment Outcome
4.
J Clin Med ; 11(17)2022 08 24.
Article in English | MEDLINE | ID: mdl-36078906

ABSTRACT

One anastomosis gastric bypass (OAGB) is associated with similar metabolic improvements and weight loss as Roux-en-Y gastric bypass (RYGB). However, this bariatric procedure is still controversial as it is suspected to result in undernutrition. Reducing the size of the biliopancreatic limb of OAGB could be essential to maintain positive outcomes while preventing side effects. The objective of this study was to compare and contrast outcomes of OAGB with two different biliopancreatic limb lengths to RYGB and Sham surgery in obese and non-obese rats. Lean and diet-induced obese Wistar rats were operated on RYGB, OAGB with a short (15 cm OAGB-15) or a long (35 cm OAGB-35) biliopancreatic limb or Sham surgery. Body weight and food intake were monitored over 30 weeks, and rats underwent oral glucose and insulin tolerance tests with a pancreatic and gut hormone secretion assay. Macronutrient absorption was determined by fecal analyses. Statistical analyses used non-parametric one-way or two-way ANOVA tests. Compared to Sham rats, RYGB, OAGB-15 and OAGB-35 rats displayed a significant reduced weight. Weight loss was greater after OAGB-35 than after OAGB-15 or Sham surgery because of transient malabsorption. All OAGB- and RYGB-operated rats displayed an improved pancreatic and gut hormone secretion in response to a meal compared to Sham rats, these effects were independent of limb length, rat weight, and maintained overtime. In conclusion, glucose homeostasis was similarly improved in obese and non-obese OAGB-15 and OAGB-35 rats suggesting that shortening the biliopancreatic limb can improve the metabolic parameters without a major influence on weight.

5.
Blood ; 137(26): 3660-3669, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33763700

ABSTRACT

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Subject(s)
Blood Group Antigens , Developmental Disabilities , Glycosylphosphatidylinositols/deficiency , Glycosylphosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Seizures , Blood Group Antigens/genetics , Blood Group Antigens/metabolism , Developmental Disabilities/enzymology , Developmental Disabilities/genetics , Glycosylphosphatidylinositols/genetics , Humans , K562 Cells , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Seizures/enzymology , Seizures/genetics
6.
Nat Commun ; 12(1): 110, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397977

ABSTRACT

Glucagon-Like Peptide-1 (GLP-1) undergoes rapid inactivation by dipeptidyl peptidase-4 (DPP4) suggesting that target receptors may be activated by locally produced GLP-1. Here we describe GLP-1 positive cells in the rat and human stomach and found these cells co-expressing ghrelin or somatostatin and able to secrete active GLP-1 in the rats. In lean rats, a gastric load of glucose induces a rapid and parallel rise in GLP-1 levels in both the gastric and the portal veins. This rise in portal GLP-1 levels was abrogated in HFD obese rats but restored after vertical sleeve gastrectomy (VSG) surgery. Finally, obese rats and individuals operated on Roux-en-Y gastric bypass and SG display a new gastric mucosa phenotype with hyperplasia of the mucus neck cells concomitant with increased density of GLP-1 positive cells. This report brings to light the contribution of gastric GLP-1 expressing cells that undergo plasticity changes after bariatric surgeries, to circulating GLP-1 levels.


Subject(s)
Bariatric Surgery , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Glucagon-Like Peptide 1/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Adult , Amino Acid Sequence , Animals , Diet, High-Fat , Female , Glucagon-Like Peptide 1/chemistry , Glucose/metabolism , Humans , Male , Middle Aged , Obesity/pathology , Phenotype , Rats, Wistar
7.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188137

ABSTRACT

UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.


Subject(s)
Galactose/biosynthesis , Glycoconjugates/biosynthesis , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Animals , Brain Diseases/metabolism , Cell Line , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Cricetinae , Culture Media/chemistry , Glycosphingolipids , Glycosylation , Humans , Kinetics , Lung , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Uridine Diphosphate Glucose/biosynthesis
8.
Blood ; 135(6): 441-448, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31826245

ABSTRACT

The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.


Subject(s)
Blood Group Antigens/genetics , Multidrug Resistance-Associated Proteins/genetics , Platelet Aggregation , Blood Platelets/cytology , Blood Platelets/metabolism , CRISPR-Cas Systems , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Deletion , Humans , Phenotype
9.
FASEB J ; 33(4): 5377-5388, 2019 04.
Article in English | MEDLINE | ID: mdl-30753087

ABSTRACT

The gut-brain peptide neuromedin U (NMU) decreases food intake and body weight and improves glucose tolerance. Here, we characterized NMU as an enteropeptide and determined how it impacts glucose excursion. NMU was expressed predominantly in the proximal small intestine, and its secretion was triggered by ingestion of a mixed meal. Although a single peripheral injection of NMU in C57BL/6NRj mice prevented the rise of glycemia upon an oral but not an intraperitoneal load of glucose, it unexpectedly prevented insulin secretion, only slightly improved peripheral insulin sensitivity, and barely reduced intestinal glucose absorption. Interestingly, peripheral administration of NMU abrogated gastric emptying. NMU receptors 1 and 2 were detected in pyloric muscles and NMU was able to directly induce pyloric contraction in a dose-dependent manner ex vivo in isometric chambers. Using a modified glucose tolerance test, we demonstrate that improvement of oral glucose tolerance by NMU was essentially, if not exclusively, because of its impact on gastric emptying. Part of this effect was abolished in vagotomized (VagoX) mice, suggesting implication of the vagus tone. Accordingly, peripheral injection of NMU was associated with increased number of c-FOS-positive neurons in the nucleus of the solitary tract, which was partly prevented in VagoX mice. Finally, NMU kept its ability to improve oral glucose tolerance in obese and diabetic murine models. Together, these data demonstrate that NMU is an enteropeptide that prevents gastric emptying directly by triggering pylorus contraction and indirectly through vagal afferent neurons. This blockade consequently reduces intestinal nutrient absorption and thereby results in an apparent improved tolerance to oral glucose challenge.-Jarry, A.-C., Merah, N., Cisse, F., Cayetanot, F., Fiamma, M.-N., Willemetz, A., Gueddouri, D., Barka, B., Valet, P., Guilmeau, S., Bado, A., Le Beyec, J., Bodineau, L., Le Gall, M. Neuromedin U is a gut peptide that alters oral glucose tolerance by delaying gastric emptying via direct contraction of the pylorus and vagal-dependent mechanisms.


Subject(s)
Blood Glucose/drug effects , Gastric Emptying/drug effects , Glucose/metabolism , Neuropeptides/pharmacology , Peptides/pharmacology , Pylorus/drug effects , Vagus Nerve/drug effects , Animals , Body Weight/drug effects , Eating/drug effects , Gastrointestinal Microbiome/drug effects , Glucose Tolerance Test/methods , Male , Mice , Mice, Inbred C57BL
10.
Front Immunol ; 8: 498, 2017.
Article in English | MEDLINE | ID: mdl-28507548

ABSTRACT

Retention of iron in tissue macrophages via upregulation of hepcidin (HAMP) and downregulation of the iron exporter ferroportin (FPN) is thought to participate in the establishment of anemia of inflammation after infection. However, an upregulation of FPN has been proposed to limit macrophages iron access to intracellular pathogens. Therefore, we studied the iron homeostasis and in particular the regulation of FPN after infection with Salmonella enterica serovar Typhimurium in mice presenting tissue macrophages with high iron (AcB61), basal iron (A/J and wild-type mice), or low iron (Hamp knock out, Hamp-/-) levels. The presence of iron in AcB61 macrophages due to extravascular hemolysis and strong erythrophagocytosis activity favored the proliferation of Salmonella in the spleen and liver with a concomitant decrease of FPN protein expression. Despite systemic iron overload, no or slight increase in Salmonella burden was observed in Hamp-/- mice compared to controls. Importantly, FPN expression at both mRNA and protein levels was strongly decreased during Salmonella infection in Hamp-/- mice. The repression of Fpn mRNA was also observed in Salmonella-infected cultured macrophages. In addition, the downregulation of FPN was associated with decreased iron stores in both the liver and spleen in infected mice. Our findings show that during Salmonella infection, FPN is repressed through an iron and hepcidin-independent mechanism. Such regulation likely provides the cellular iron indispensable for the growth of Salmonella inside the macrophages.

11.
FASEB J ; 30(1): 252-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26370847

ABSTRACT

The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.


Subject(s)
Cation Transport Proteins/metabolism , Intestinal Mucosa/metabolism , Iron/metabolism , Microbiota , Animals , Cation Transport Proteins/genetics , Colon/metabolism , Colon/microbiology , Cytochromes b/genetics , Cytochromes b/metabolism , Duodenum/metabolism , Duodenum/microbiology , Ferritins/blood , Intestinal Mucosa/microbiology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
12.
Transfusion ; 55(11): 2620-3, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26247620

ABSTRACT

BACKGROUND: Transfusion support of S-s- patients is very challenging but can now be alleviated by genotyping mutations in the GYPB gene to predict their U- or U+(var) phenotype. However, the phenotype predicted by genotyping does not always correspond to the observed phenotype of red blood cells (RBCs), which requires further investigation to avoid such a typing discrepancy in the future. In this study, we elucidated the case of an S-s- female patient of African origin who was predicted to be S+s- by our genotyping platform. STUDY DESIGN AND METHODS: Long-range polymerase chain reaction (PCR) amplification and extended Sanger sequencing were required. RESULTS: The Ss typing discrepancy in the proband resulted from a converted GYPB allele that encodes neither S nor s due to the replacement of Exon B4 of GYPB by the homologous Exon A4 of GYPA. In this novel GYPB-A-B hybrid gene, the GYPA segment actually starts just downstream of Exon B2, causing a MN typing discrepancy too. While the proband's RBCs were M+N-, the genotyping predicted the M+N+ phenotype. CONCLUSION: The reported GYPB-A-B hybrid gene constitutes a limitation for the accurate prediction of the MN and Ss phenotypes by current genotyping methods. A PCR assay was therefore developed to detect its presence.


Subject(s)
Blood Group Antigens/genetics , Glycophorins/genetics , MNSs Blood-Group System/genetics , Alleles , Exons/genetics , Female , Genotype , Humans , Phenotype , Polymerase Chain Reaction , Pregnancy
13.
Blood ; 124(3): 441-4, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24904115

ABSTRACT

Iron is an essential element required for development and survival of all living organisms. In fetuses, maternofetal iron transfer across the placenta is essential for growth and development. In neonates, efficient intestinal iron absorption is required to scavenge as much iron as possible from the low-iron-content milk. During these periods, efficient iron mobilization is ensured by the downregulation of the iron regulatory hormone hepcidin by as-yet uncharacterized molecular mechanisms. Here we demonstrate that the recently described hepcidin repressor-the serine protease matriptase-2 (encoded by Tmprss6)-is responsible for this repression throughout development, with its deficiency leading to increased hepcidin levels triggering iron deficiency and anemia starting in utero. This result might have implications for a better understanding of iron homeostasis during early development in iron-refractory iron deficiency anemia patients, who present with microcytic anemia caused by hyperhepcidinemia, and of questions about the role of matriptase-2 in human neonates.


Subject(s)
Hepcidins/metabolism , Iron/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Anemia, Iron-Deficiency/etiology , Animals , Bone Morphogenetic Protein 6/deficiency , Bone Morphogenetic Protein 6/genetics , Bone Morphogenetic Protein 6/metabolism , Down-Regulation , Female , Fetus/metabolism , GPI-Linked Proteins , Hemochromatosis Protein , Homeostasis , Humans , Iron Deficiencies , Liver/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Pregnancy , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Signal Transduction
14.
Biochem J ; 449(1): 69-78, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22992020

ABSTRACT

HO1 (haem oxygenase 1) and Fpn (ferroportin) are key proteins for iron recycling from senescent red blood cells and therefore play a major role in controlling the bioavailability of iron for erythropoiesis. Although important aspects of iron metabolism in HO1-deficient (Hmox1-/-) mice have already been revealed, little is known about the regulation of Fpn expression and its role in HO1 deficiency. In the present study, we characterize the cellular and systemic factors influencing Fpn expression in Hmox1-/- bone marrow-derived macrophages and in the liver and kidney of Hmox1-/- mice. In Hmox1-/- macrophages, Fpn protein was relatively highly expressed under high levels of hepcidin in culture medium. Similarly, despite high hepatic hepcidin expression, Fpn is still detected in Kupffer cells and is also markedly enhanced at the basolateral membrane of the renal tubules of Hmox1-/- mice. Through the activity of highly expressed Fpn, epithelial cells of the renal tubules probably take over the function of impaired system of tissue macrophages in recycling iron accumulated in the kidney. Moreover, although we have found increased expression of FLVCR (feline leukaemia virus subgroup C receptor), a haem exporter, in the kidneys of Hmox1-/- mice, haem level was increased in these organs. Furthermore, we show that iron/haem-mediated toxicity are responsible for renal injury documented in the kidneys of Hmox1-/- mice.


Subject(s)
Acute Kidney Injury/metabolism , Cation Transport Proteins/biosynthesis , Gene Expression Regulation , Heme Oxygenase-1/deficiency , Kidney/metabolism , Membrane Proteins/deficiency , Acute Kidney Injury/genetics , Animals , Bone Marrow Cells/enzymology , Bone Marrow Cells/metabolism , Cation Transport Proteins/genetics , Cells, Cultured , Female , Heme/toxicity , Heme Oxygenase-1/genetics , Iron/toxicity , Kidney/enzymology , Macrophages/enzymology , Macrophages/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout
15.
PLoS One ; 7(7): e42199, 2012.
Article in English | MEDLINE | ID: mdl-22860081

ABSTRACT

BACKGROUND: Senescent red blood cells (RBC) are recognized, phagocytosed and cleared by tissue macrophages. During this erythrophagocytosis (EP), RBC are engulfed and processed in special compartments called erythrophagosomes. We previously described that following EP, heme is rapidly degraded through the catabolic activity of heme oxygenase (HO). Extracted heme iron is then either exported or stored by macrophages. However, the cellular localization of the early steps of heme processing and iron extraction during EP remains to be clearly defined. METHODOLOGY/PRINCIPAL FINDINGS: We took advantage of our previously described cellular model of EP, using bone marrow-derived macrophages (BMDM). The subcellular localization of both inducible and constitutive isoforms of HO (HO-1 and HO-2), of the divalent metal transporters (Nramp1, Nramp2/DMT1, Fpn), and of the recently identified heme transporter HRG-1, was followed by fluorescence and electron microscopy during the earliest steps of EP. We also looked at some ER [calnexin, glucose-6-phosphatase (G6Pase) activity] and lysosomes (Lamp1) markers during EP. In both quiescent and LPS-activated BMDM, Nramp1 and Lamp1 were shown to be strong markers of the erythrophagolysosomal membrane. HRG-1 was also recruited to the erythrophagosome. Furthermore, we observed calnexin labeling and G6Pase activity at the erythrophagosomal membrane, indicating the contribution of ER in this phagocytosis model. In contrast, Nramp2/DMT1, Fpn, HO-1 and HO-2 were not detected at the membrane of erythrophagosomes. CONCLUSIONS/SIGNIFICANCE: Our study highlights the subcellular localization of various heme- and iron-related proteins during early steps of EP, thereby suggesting a model for heme catabolism occurring outside the phagosome, with heme likely being transported into the cytosol through HRG1. The precise function of Nramp1 at the phagosomal membrane in this model remains to be determined.


Subject(s)
Erythrocytes/metabolism , Heme/metabolism , Iron/metabolism , Phagocytosis , Subcellular Fractions/metabolism , Animals , Cells, Cultured , Culture Media, Conditioned , Mice , Mice, Inbred Strains , Microscopy, Electron , Microscopy, Fluorescence
16.
Blood Cells Mol Dis ; 48(2): 110-20, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22178061

ABSTRACT

BACKGROUND: Ceruloplasmin is a positive acute-phase protein with both anti- and pro-oxidant activities, thus having still unclear physiological functions in inflammatory processes. Importantly, ceruloplasmin has been implicated in iron metabolism due to its ferroxidase activity, assisting ferroportin on cellular iron efflux. Ceruloplasmin can be expressed as a secreted or as a membrane glycosylphosphatidylinositol-anchored protein (GPI-ceruloplasmin), this latter one being reported as expressed mostly in the brain. DESIGN AND METHODS: We studied the expression of both ceruloplasmin isoforms in human peripheral blood lymphocytes, monocytes, mouse macrophages and human hepatocarcinoma cell line HepG2, using immunofluorescence and immunoblotting techniques. Co-localization of ceruloplasmin and ferroportin was also investigated by immunofluorescence in mouse macrophages. RESULTS: Ceruloplasmin was detected by immunoblotting and immunofluorescence in membrane and cytosol of all cell types. The cell surface ceruloplasmin was identified as the GPI-isoform and localized in lipid rafts from monocytes, macrophages and HepG2 cells. In macrophages, increased expression levels and co-localization of ferroportin and GPI-ceruloplasmin in cell surface lipid rafts were observed after iron treatment. Such iron upregulation of ceruloplasmin was not observed in HepG2. CONCLUSIONS: Our results revealed an unexpected ubiquitous expression of the GPI-ceruloplasmin isoform in immune and hepatic cells. Different patterns of regulation of ceruloplasmin in these cells may reflect distinct physiologic functions of this oxidase. In macrophages, GPI-ceruloplasmin and ferroportin likely interact in lipid rafts to export iron from cells. Precise knowledge about ceruloplasmin isoforms expression and function in various cell types will help to clarify the role of ceruloplasmin in many diseases related to iron metabolism, inflammation and oxidative biology.


Subject(s)
Ceruloplasmin/metabolism , Glycosylphosphatidylinositols/metabolism , Hepatocytes/metabolism , Lymphocytes/metabolism , Macrophages/metabolism , Monocytes/metabolism , Animals , Cation Transport Proteins/metabolism , Cell Line , Cells, Cultured , Humans , Iron/metabolism , Isoenzymes/metabolism , Membrane Microdomains/metabolism , Mice
17.
Haematologica ; 95(8): 1269-77, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20220061

ABSTRACT

BACKGROUND: Expression of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and is decreased by hepcidin. We previously showed that ferroportin is present in specific cell surface domains suggestive of lipid rafts. Herein, we have clarified the localization of ferroportin in macrophage membranes and tested whether raft-mediated endocytosis plays a role in hepcidin activity. DESIGN AND METHODS: Raft/detergent-resistant membranes from murine bone marrow-derived macrophages and J774a1 cells were analyzed by Western blotting. The effect of lipid raft- or clathrin-dependent endocytosis inhibitors was studied on hepcidin activity. For this purpose, after treatment, ferroportin expression was analyzed by fluorescence microscopy, Western blotting of total protein extracts or plasma membrane protein samples, and by quantitative immunofluorescence assay (In-Cell-Western). RESULTS: Macrophage ferroportin was mostly detected in detergent-resistant membranes containing raft markers (caveolin 1, flotillin 1). Interestingly, iron overload strongly increased the presence of ferroportin in the lightest raft fraction. Moreover, lipid raft breakdown by cholesterol sequestration (filipin) or depletion (methyl-beta-cyclodextrin) decreased hepcidin activity on macrophage ferroportin. Cell surface biotinylation and immunofluorescence studies indicated that the process of both hepcidin mediated endocytosis and degradation of ferroportin were affected. By contrast, the inhibition of clathrin dependent endocytosis did not interfere with hepcidin effect. CONCLUSIONS: Macrophage ferroportin is present in lipid rafts which contribute to hepcidin activity. These observations reveal the existence of a new cellular pathway in hepcidin mediated degradation of ferroportin and open a new area of investigation in mammalian iron homeostasis.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cation Transport Proteins/metabolism , Endocytosis , Macrophages/drug effects , Membrane Microdomains/metabolism , Animals , Blotting, Western , Caveolin 1/metabolism , Cell Line , Cells, Cultured , Cholera Toxin/metabolism , Ferric Compounds/pharmacology , Filipin/pharmacology , Hepcidins , Macrophages/cytology , Macrophages/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred DBA , Microscopy, Fluorescence , Nitrilotriacetic Acid/analogs & derivatives , Nitrilotriacetic Acid/pharmacology , Transferrin/metabolism
18.
Biochem J ; 420(3): 383-90, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19296829

ABSTRACT

The continuous recycling of haem iron following phagocytosis and catabolism of senescent and damaged red blood cells by macrophages is a crucial process in the maintenance of systemic iron homoeostasis. However, little is known about macrophage iron handling in haemolytic states resulting from a deficiency in antioxidant defences. Our observations indicate that the recently described chronic, but moderate regenerative, haemolytic anaemia of aged SOD1 (superoxide dismutase 1)-knockout mice is associated with red blood cell modifications and sensitivity to both intra- and extra-vascular haemolysis. In the present study, we have characterized the molecular pathways of iron turnover in the liver of Sod1-deficient mice. Despite iron accumulation in liver macrophages, namely Kupffer cells, we did not measure any significant change in non-haem liver iron. Interestingly, in Kupffer cells, expression of the rate-limiting enzyme in haem degradation, haem oxygenase-1, and expression of the iron exporter ferroportin were both up-regulated, whereas the hepcidin mRNA level in the liver was decreased in Sod1-/- mice. These results suggest that concerted changes in the hepatic expression of iron- and haem-related genes in response to haemolytic anaemia in Sod1-/- mice act to reduce toxic iron accumulation in the liver and respond to the needs of erythropoiesis.


Subject(s)
Anemia, Hemolytic/metabolism , Iron/metabolism , Liver/metabolism , Superoxide Dismutase/deficiency , Aging , Anemia, Hemolytic/blood , Anemia, Hemolytic/pathology , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Blotting, Western , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Female , Flow Cytometry , Fluorescent Antibody Technique , Heme/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hemoglobins/metabolism , Hemolysis , Hepcidins , Iron/blood , Liver/pathology , Male , Mice , Mice, Inbred Strains , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/genetics
19.
Bioorg Med Chem Lett ; 17(1): 152-5, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17049852

ABSTRACT

An efficient and convergent method for the synthesis of mannose-1-phosphate prodrugs is described as a potential therapy for congenital disorders of glycosylation-Ia (CDG-Ia). The key feature of the proposed approach is the silver assisted nucleophilic substitution of 2,3,4,6-tetra-O-protected-alpha-d-mannopyranosyl bromides with various silver phosphate salts to afford mono, di, and tri-mannopyranosyl phosphates. A preliminary biological evaluation of the synthesized phosphate prodrugs has been carried out.


Subject(s)
Congenital Disorders of Glycosylation/drug therapy , Mannosephosphates/chemistry , Organophosphates/chemistry , Prodrugs/chemical synthesis , Carbohydrate Sequence , Humans , Molecular Sequence Data , Organophosphates/chemical synthesis , Organophosphates/therapeutic use , Prodrugs/chemistry , Prodrugs/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...