Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1386586, 2024.
Article in English | MEDLINE | ID: mdl-38779663

ABSTRACT

Background: Sepsis, a life-threatening condition caused by the dysregulated host response to infection, is a major global health concern. Understanding the impact of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes. This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity as a risk factor for development of sepsis in patients with COVID-19. Methods: A multicenter observational study enrolled 95 intensive care patients with COVID-19-induced sepsis and 80 post-surgery individuals as controls. HCMV serostatus was determined using an ELISA test. Comprehensive clinical data, including demographics, comorbidities, and 30-day mortality, were collected. Statistical analyses evaluated the association between HCMV seropositivity and COVID-19 induced sepsis. Results: The prevalence of HCMV seropositivity did not significantly differ between COVID-19-induced sepsis patients (78%) and controls (71%, p = 0.382) in the entire cohort. However, among patients aged ≤60 years, HCMV seropositivity was significantly higher in COVID-19 sepsis patients compared to controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus did not affect 30-day survival. Discussion: These findings confirm the association between HCMV seropositivity and COVID-19 sepsis in non-geriatric patients. However, the lack of an independent effect on 30-day survival can be explained by the cross-reactivity of HCMV specific CD8+ T-cells towards SARS-CoV-2 peptides, which might confer some protection to HCMV seropositive patients. The inclusion of a post-surgery control group strengthens the generalizability of the findings. Further research is needed to elucidate the underlying mechanisms of this association, explore different patient populations, and identify interventions for optimizing patient management. Conclusion: This study validates the association between HCMV seropositivity and severe COVID-19-induced sepsis in non-geriatric patients, contributing to the growing body of evidence on viral pathogens in sepsis. Although HCMV serostatus did not independently influence 30-day survival, future investigations should focus on unraveling the intricate interplay between HCMV, immune responses, and COVID-19. These insights will aid in risk stratification and the development of targeted interventions for viral sepsis.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Cytomegalovirus , SARS-CoV-2 , Sepsis , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/epidemiology , COVID-19/complications , Male , Female , Middle Aged , Sepsis/immunology , Sepsis/epidemiology , Sepsis/mortality , Cytomegalovirus/immunology , Aged , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/mortality , Cytomegalovirus Infections/complications , SARS-CoV-2/immunology , Risk Factors , Adult , Antibodies, Viral/blood
2.
Cells ; 9(10)2020 10 13.
Article in English | MEDLINE | ID: mdl-33066217

ABSTRACT

Mitochondrial DNA (mtDNA) plays a vital role as a damage-associated molecular pattern in sepsis being able to shape the immune response. Since pathogen recognition receptors of innate immune cells are activated by demethylated DNA only, we set out to investigate the amount of DNA methyltransferase 1 (DNMT1) in mitochondria and the extent of mtDNA methylation in a human endotoxin model. Peripheral blood mononuclear cells of 20 healthy individuals were isolated from whole blood and stimulated with lipopolysaccharide (LPS) for 48 h. Subsequently, DNMT1 protein abundance was assessed in whole cells and a mitochondrial fraction. At the same time, methylation levels of mtDNA were quantified, and cytokine expression in the supernatant was measured. Despite increased cellular expression of DNMT1 after LPS stimulation, the degree of mtDNA methylation slightly decreased. Strikingly the mitochondrial protein abundance of DNMT1 was reduced by 50% in line with the lower degree of mtDNA methylation. Although only modest alterations were seen in the degree of mtDNA methylation, these strongly correlated with IL-6 and IL-10 expression. Our data may hint at a protein import problem for DNMT1 into the mitochondria under LPS stimulation and suggest a role of demethylated mtDNA in the regulation of the inflammatory immune response.


Subject(s)
DNA, Mitochondrial/genetics , Endotoxemia/chemically induced , Endotoxemia/genetics , Epigenesis, Genetic , Inflammation/genetics , Adult , Cytokines/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Epigenesis, Genetic/drug effects , Female , Genome, Mitochondrial , Humans , Lipopolysaccharides , Male , Mitochondria/enzymology
3.
BMJ Open ; 10(7): e038532, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641340

ABSTRACT

INTRODUCTION: Sepsis is defined as detrimental immune response to an infection. This overwhelming reaction often abolishes a normal reconstitution of the immune cell homeostasis that in turn increases the risk for further complications. Recent studies revealed a favourable impact of ketone bodies on resolution of inflammation. Thus, a ketogenic diet may provide an easy-to-apply and cost-effective treatment option potentially alleviating sepsis-evoked harm. This study is designed to assess the feasibility, efficiency and safety of a ketogenic diet in septic patients. METHODS AND ANALYSIS: This monocentric study is a randomised, controlled and open-label trial, which is conducted on an intensive care unit of a German university hospital. As intervention enteral nutrition with reduced amount of carbohydrates (ketogenic) or standard enteral nutrition (control) is applied. The primary endpoint is the detection of ketone bodies in patients' blood and urine samples. As secondary endpoints, the impact on important safety-relevant issues (eg, glucose metabolism, lactate serum concentration, incidence of metabolic acidosis, thyroid function and 30-day mortality) and the effect on the immune system are analysed. ETHICS AND DISSEMINATION: The study has received the following approvals: Ethics Committee of the Medical Faculty of Ruhr-University Bochum (No. 18-6557-BR). Results will be made available to critical care survivors, their caregivers, the funders, the critical care societies and other researchers by publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBERS: German Clinical Trial Register (DRKS00017710); Universal Trial Number (U1111-1237-2493).


Subject(s)
Intensive Care Units , Sepsis , Carbohydrates , Critical Care , Humans , Prospective Studies , Randomized Controlled Trials as Topic , Sepsis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...