Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Dermatologie (Heidelb) ; 75(3): 218-224, 2024 Mar.
Article in German | MEDLINE | ID: mdl-38351374

ABSTRACT

The pathogenesis of fibrosing alterations in the skin and other organ systems is not yet sufficiently understood and current therapeutic options are limited. Fibrosing diseases of the skin lead to a loss of function, which can subsequently be accompanied by serious impairments in quality of life, increased morbidity and ultimately increased mortality. There are currently only a few pharmacological and therapeutic approaches approved to prevent or ameliorate fibrosing diseases. Furthermore, tissue-specific versus common, non-organ-specific pathophysiological cellular and molecular mechanisms are not resolved. The development of new, cause-based and therefore likely more efficient therapeutic approaches is urgently needed. This represents a major challenge, but also opens up the opportunity for special contributions to improve this medically unsolved problem. Here we present important findings from recent years with a focus on the role of the immune response in fibrogenesis.


Subject(s)
Quality of Life , Skin Diseases , Humans , Fibrosis , Skin Diseases/etiology , Skin/pathology
2.
J Invest Dermatol ; 144(1): 152-164.e7, 2024 01.
Article in English | MEDLINE | ID: mdl-37516311

ABSTRACT

Cells of the monocyte/macrophage lineage are an integral component of the body's innate ability to restore tissue function after injury. In parallel to mounting an inflammatory response, clearance of monocytes/macrophages from the wound site is critical to re-establish tissue functionality and integrity during the course of healing. The role of regulated cell death in macrophage clearance from damaged tissue and its implications for the outcome of the healing response is little understood. In this study, we explored the role of macrophage-specific FADD-mediated cell death on Ripk3-/- background in a mechanical skin injury model in mice. We found that combined inhibition of RIPK3-mediated necroptosis and FADD-caspase-8-mediated apoptosis in macrophages profoundly delayed wound healing. Importantly, RIPK3 deficiency alone did not considerably alter the wound healing process and macrophage population dynamics, arguing that inhibition of FADD-caspase-8-dependent death of macrophages is primarily responsible for delayed wound closure. Notably, TNF blockade reversed the accumulation of Ly6Chigh macrophages induced by combined deficiency of FADD and RIPK3, indicating a critical dual role of TNF-mediated prosurvival and cell death signaling, particularly in this highly proinflammatory macrophage subset. Our findings reveal a previously uncharacterized cross-talk of inflammatory and cell death signaling in macrophages in regulating repair processes in the skin.


Subject(s)
Apoptosis , Macrophages , Animals , Mice , Caspase 8/metabolism , Macrophages/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Skin/metabolism
3.
STAR Protoc ; 4(4): 102765, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38060383

ABSTRACT

The role of dermal white adipose tissue in regulating skin homeostasis and self-renewal processes has recently attracted interest. However, the isolation of proteins from dermal adipocytes for biochemical analysis is challenging. Here, we provide a protocol for the isolation of murine dermal adipocytes. We describe steps for inducing adipocyte-specific gene deletion, adipocyte isolation, protein purification, and western blot analysis. The reliability of the protocol is demonstrated by verifying efficient adipocyte-specific Atgl gene deletion in a tamoxifen-inducible Cre/loxP-based mouse model. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2019).1.


Subject(s)
Adipocytes , Adipose Tissue, White , Mice , Animals , Reproducibility of Results , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Skin
4.
Sci Adv ; 9(30): eadg2829, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37494451

ABSTRACT

Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.


Subject(s)
Apoptosis , Virus Diseases , Animals , Mice , Caspase 8/genetics , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
J Invest Dermatol ; 143(12): 2456-2467.e5, 2023 12.
Article in English | MEDLINE | ID: mdl-37295491

ABSTRACT

Type 2 immune responses have been increasingly linked with tissue maintenance, regeneration, and metabolic homeostasis. The molecular basis of regulator and effector mechanisms of type 2 immunity in skin regeneration and homeostasis is still lacking. In this study, we analyzed the role of IL-4Rα signaling in the regeneration of diverse cellular compartments in the skin. Mutants with global IL-4Rα deficiency showed two major phenotypes: first, a pronounced atrophy of the interfollicular epidermis, and second, a significant increase in dermal white adipose tissue thickness in mice aged 3 weeks (postnatal day 21) compared with littermate controls. Notably, IL-4Rα deficiency decreased the activation of hormone-sensitive lipase, a rate-limiting step in lipolysis. Immunohistochemical and FACS analysis in IL-4/enhanced GFP reporter mice showed that IL-4 expression peaked on postnatal day 21 and that eosinophils are the predominant IL-4-expressing cells. Eosinophil-deficient mice recapitulated the lipolytic-defective dermal white adipose tissue phenotype of Il4ra-deficient mice, showing that eosinophils are necessary for dermal white adipose tissue lipolysis. Collectively, we provide mechanistic insights into the regulation of interfollicular epidermis and hormone-sensitive lipase-mediated lipolysis in dermal white adipose tissue in early life by IL-4Rα, and our findings show that eosinophils play a critical role in this process.


Subject(s)
Interleukin-4 , Sterol Esterase , Animals , Mice , Epidermis , Skin , Adipose Tissue, White
6.
Article in English | MEDLINE | ID: mdl-36041784

ABSTRACT

Monocytes/macrophages are key components of the body's innate ability to restore tissue function after injury. In most tissues, both embryo-derived tissue-resident macrophages and recruited blood monocyte-derived macrophages contribute to the injury response. The developmental origin of injury-associated macrophages has a major impact on the outcome of the healing process. Macrophages are abundant at all stages of repair and coordinate the progression through the different phases of healing. They are highly plastic cells that continuously adapt to their environment and acquire phase-specific activation phenotypes. Advanced omics methodologies have revealed a vast heterogeneity of macrophage activation phenotypes and metabolic status at injury sites in different organs. In this review, we highlight the role of the developmental origin, the link between the wound phase-specific activation state and metabolic reprogramming as well as the fate of macrophages during the resolution of the wounding response.


Subject(s)
Macrophage Activation , Macrophages , Macrophages/metabolism , Wound Healing/physiology
8.
STAR Protoc ; 3(2): 101337, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35496783

ABSTRACT

Understanding macrophage heterogeneity in tissue repair is a major challenge. Here, we describe a protocol that combines isolation of immune cells from skin wounds with subsequent flow-cytometry-based sorting of wound macrophages and single-cell RNA sequencing. We use a modified version of the original Smart-seq2 protocol to increase speed and accuracy. This protocol is useful for analyzing the pronounced heterogeneity of activation phenotypes in wound macrophages and might be adapted to other experimental models of skin inflammation. For complete details on the use and execution of this protocol, please refer to Willenborg et al. (2021).


Subject(s)
Macrophages , Wound Healing , Animals , Flow Cytometry , Leukocyte Count , Mice , Sequence Analysis, RNA
9.
Sci Immunol ; 7(70): eabl7482, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35427180

ABSTRACT

Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.


Subject(s)
Macrophage Activation , Macrophages , Animals , Cytokines/metabolism , Homeostasis , Inflammation/metabolism , Mice
10.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35027468

ABSTRACT

Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn's Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF's anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.


Subject(s)
Macrophages , Transcription, Genetic , Tumor Necrosis Factor-alpha/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Female , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Tumor Necrosis Factor Inhibitors/pharmacology
11.
Cell Metab ; 33(12): 2398-2414.e9, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34715039

ABSTRACT

Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.


Subject(s)
Macrophages , Wound Healing , Animals , Macrophages/metabolism , Mice , Mitochondria/metabolism
12.
Front Immunol ; 12: 667830, 2021.
Article in English | MEDLINE | ID: mdl-33897716

ABSTRACT

Macrophages are critical mediators of tissue vascularization both in health and disease. In multiple tissues, macrophages have been identified as important regulators of both blood and lymphatic vessel growth, specifically following tissue injury and in pathological inflammatory responses. In development, macrophages have also been implicated in limiting vascular growth. Hence, macrophages provide an important therapeutic target to modulate tissue vascularization in the clinic. However, the molecular mechanisms how macrophages mediate tissue vascularization are still not entirely resolved. Furthermore, mechanisms might also vary among different tissues. Here we review the role of macrophages in tissue vascularization with a focus on their role in blood and lymphatic vessel formation in the barrier tissues cornea and skin. Comparing mechanisms of macrophage-mediated hem- and lymphangiogenesis in the angiogenically privileged cornea and the physiologically vascularized skin provides an opportunity to highlight similarities but also tissue-specific differences, and to understand how macrophage-mediated hem- and lymphangiogenesis can be exploited for the treatment of disease, including corneal wound healing after injury, graft rejection after corneal transplantation or pathological vascularization of the skin.


Subject(s)
Blood Vessels/metabolism , Cornea/blood supply , Corneal Neovascularization , Lymphangiogenesis , Lymphatic Vessels/metabolism , Macrophages/metabolism , Neovascularization, Physiologic , Skin/blood supply , Animals , Blood Vessels/immunology , Blood Vessels/pathology , Humans , Lymphatic Vessels/immunology , Lymphatic Vessels/pathology , Macrophages/immunology , Macrophages/pathology , Phenotype , Signal Transduction , Wound Healing
13.
Matrix Biol ; 94: 57-76, 2020 12.
Article in English | MEDLINE | ID: mdl-32890632

ABSTRACT

Skin integrity and function depends to a large extent on the composition of the extracellular matrix, which regulates tissue organization. Collagen XII is a homotrimer with short collagenous domains that confer binding to the surface of collagen I-containing fibrils and extended flexible arms, which bind to non-collagenous matrix components. Thereby, collagen XII helps to maintain collagen suprastructure and to absorb stress. Mutant or absent collagen XII leads to reduced muscle and bone strength and lax skin, whereas increased collagen XII amounts are observed in tumor stroma, scarring and fibrosis. This study aimed at uncovering in vivo mechanisms by which collagen XII may achieve these contrasting outcomes. We analyzed skin as a model tissue that contains abundant fibrils, composed of collagen I, III and V with collagen XII decorating their surface, and which is subject to mechanical stress. The impact of different collagen XII levels was investigated in collagen XII-deficient (Col12-KO) mice and in mice with collagen XII overexpression in the dermis (Col12-OE). Unchallenged skin of these mice was histologically inconspicuous, but at the ultrastructural level revealed distinct aberrations in collagen network suprastructure. Repair of excisional wounds deviated from controls in both models by delayed healing kinetics, which was, however, caused by completely different mechanisms in the two mouse lines. The disorganized matrix in Col12-KO wounds failed to properly sequester TGFß, resulting in elevated numbers of myofibroblasts. These are, however, unable to contract and remodel the collagen XII-deficient matrix. Excess of collagen XII, in contrast, promotes persistence of M1-like macrophages in the wound bed, thereby stalling the wounds in an early inflammatory stage of the repair process and delaying healing. Taken together, we demonstrate that collagen XII is a key component that assists in orchestrating proper skin matrix structure, controls growth factor availability and regulates cellular composition and function. Together, these functions are pivotal for re-establishing homeostasis after injury.


Subject(s)
Collagen Type XII/genetics , Skin/growth & development , Transforming Growth Factor beta/genetics , Wound Healing/genetics , Animals , Collagen Type I/genetics , Extracellular Matrix , Fibroblasts/metabolism , Fibroblasts/pathology , Homeostasis/genetics , Humans , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout/genetics , Myofibroblasts/metabolism , Skin/parasitology
14.
J Allergy Clin Immunol ; 145(1): 283-300.e8, 2020 01.
Article in English | MEDLINE | ID: mdl-31401286

ABSTRACT

BACKGROUND: Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE: Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS: Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS: RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION: Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.


Subject(s)
Epidermis , Intermediate Filament Proteins , Lipids , Protein Processing, Post-Translational/immunology , Rapamycin-Insensitive Companion of mTOR Protein , Signal Transduction/immunology , Animals , Epidermis/immunology , Epidermis/metabolism , Filaggrin Proteins , Ichthyosis/genetics , Ichthyosis/immunology , Ichthyosis/metabolism , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/immunology , Intermediate Filament Proteins/metabolism , Lipids/biosynthesis , Lipids/genetics , Lipids/immunology , Mice , Mice, Knockout , Protein Processing, Post-Translational/genetics , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/immunology , Signal Transduction/genetics
15.
Science ; 362(6417): 891-892, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30467155
16.
J Immunol ; 201(2): 663-674, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29898959

ABSTRACT

Myeloid cells can be beneficial as well as harmful in tissue regenerative responses. The molecular mechanisms by which myeloid cells control this critical decision of the immune system are not well understood. Using two different models of physiological acute or pathological chronic skin damage, in this study we identified myeloid cell-restricted STAT3 signaling as important and an injury context-dependent regulator of skin fibrosis. Targeted disruption of STAT3 signaling in myeloid cells significantly accelerated development of pathological skin fibrosis in a model of chronic bleomycin-induced tissue injury, whereas the impact on wound closure dynamics and quality of healing after acute excision skin injury was minor. Chronic bleomycin-mediated tissue damage in control mice provoked an antifibrotic gene signature in macrophages that was characterized by upregulated expression of IL-10, SOCS3, and decorin. In contrast, in STAT3-deficient macrophages this antifibrotic repair program was abolished whereas TGF-ß1 expression was increased. Notably, TGF-ß1 synthesis in cultured control bone marrow-derived macrophages (BMDMs) was suppressed after IL-10 exposure, and this suppressive effect was alleviated by STAT3 deficiency. Accordingly, coculture of IL-10-stimulated control BMDMs with fibroblasts suppressed expression of the TGF-ß1 downstream target connective tissue growth factor in fibroblasts, whereas this suppressive effect was lost by STAT3 deficiency in BMDMs. Our findings highlight a previously unrecognized protective role of myeloid cell-specific STAT3 signaling in immune cell-mediated skin fibrosis, and its regulatory pathway could be a potential target for therapy.


Subject(s)
Macrophages/immunology , Myeloid Cells/physiology , STAT3 Transcription Factor/metabolism , Skin Diseases/immunology , Skin/pathology , Acute Disease , Animals , Cells, Cultured , Chronic Disease , Disease Models, Animal , Fibrosis , Interleukin-10/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Regeneration , STAT3 Transcription Factor/genetics , Signal Transduction , Skin Diseases/chemically induced , Transcriptome , Transforming Growth Factor beta/metabolism , Wound Healing
17.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L687-L698, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28684544

ABSTRACT

Deficiency of the extracellular matrix protein latent transforming growth factor-ß (TGF-ß)-binding protein-4 (LTBP4) results in lack of intact elastic fibers, which leads to disturbed pulmonary development and lack of normal alveolarization in humans and mice. Formation of alveoli and alveolar septation in pulmonary development requires the concerted interaction of extracellular matrix proteins, growth factors such as TGF-ß, fibroblasts, and myofibroblasts to promote elastogenesis as well as vascular formation in the alveolar septae. To investigate the role of LTBP4 in this context, lungs of LTBP4-deficient (Ltbp4-/-) mice were analyzed in close detail. We elucidate the role of LTBP4 in pulmonary alveolarization and show that three different, interacting mechanisms might contribute to alveolar septation defects in Ltbp4-/- lungs: 1) absence of an intact elastic fiber network, 2) reduced angiogenesis, and 3) upregulation of TGF-ß activity resulting in profibrotic processes in the lung.


Subject(s)
Elastic Tissue/pathology , Fibroblasts/pathology , Fibrosis/pathology , Latent TGF-beta Binding Proteins/physiology , Lung/pathology , Neovascularization, Pathologic/pathology , Pulmonary Alveoli/pathology , Animals , Cells, Cultured , Elastic Tissue/metabolism , Extracellular Matrix/metabolism , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Lung/blood supply , Lung/metabolism , Male , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Organogenesis/physiology , Pulmonary Alveoli/metabolism , Transforming Growth Factor beta/metabolism
18.
Exp Dermatol ; 25(4): 293-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26661498

ABSTRACT

Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune disease of the skin and mucous membranes. Its pathogenesis is based on IgG autoantibodies that target the desmosomal cadherins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1) and induce intra-epidermal loss of adhesion. Although the PV pathogenesis is well-understood, therapeutic options are still limited to immunosuppressive drugs, particularly corticosteroids, which are associated with significant side effects. Dsg3-reactive T regulatory cells (Treg) have been previously identified in PV and healthy carriers of PV-associated HLA class II alleles. Ex vivo, Dsg3-specific Treg cells down-regulated the activation of pathogenic Dsg3-specific T-helper (Th) 2 cells. In this study, in a HLA-DRB1*04:02 transgenic mouse model of PV, peripheral Treg cells were modulated by the use of Treg-depleting or expanding monoclonal antibodies, respectively. Our findings show that, in vivo, although not statistically significant, Treg cells exert a clear down-regulatory effect on the Dsg3-driven T-cell response and, accordingly, the formation of Dsg3-specific IgG antibodies. These observations confirm the powerful immune regulatory functions of Treg cells and identify Treg cells as potential therapeutic modulators in PV.


Subject(s)
Autoantibodies/chemistry , CD28 Antigens/immunology , Desmoglein 3/genetics , HLA-DRB1 Chains/immunology , Pemphigus/immunology , T-Lymphocytes, Regulatory/metabolism , Alleles , Animals , Antibodies, Monoclonal/chemistry , CD28 Antigens/genetics , Cell Proliferation , Desmoglein 1/genetics , Down-Regulation , HLA-DRB1 Chains/genetics , Humans , Immunoglobulin G/chemistry , Inflammation , Mice , Mice, Transgenic , Pemphigus/genetics , Recombinant Proteins/chemistry , T-Lymphocytes, Regulatory/cytology , Th2 Cells/cytology , Th2 Cells/metabolism
19.
J Immunol ; 195(11): 5296-5308, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26519530

ABSTRACT

Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM.


Subject(s)
Dermatitis/immunology , Macrophages/immunology , Receptor, IGF Type 1/genetics , Receptor, Insulin/genetics , Skin/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Dermatitis/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Inflammation/genetics , Inflammation/immunology , Insulin Resistance/genetics , Insulin Resistance/immunology , Macrophage Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology , Sodium Dodecyl Sulfate/adverse effects , Ultraviolet Rays/adverse effects
20.
Immunity ; 43(4): 803-16, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26474656

ABSTRACT

Activation of the immune response during injury is a critical early event that determines whether the outcome of tissue restoration is regeneration or replacement of the damaged tissue with a scar. The mechanisms by which immune signals control these fundamentally different regenerative pathways are largely unknown. We have demonstrated that, during skin repair in mice, interleukin-4 receptor α (IL-4Rα)-dependent macrophage activation controlled collagen fibril assembly and that this process was important for effective repair while having adverse pro-fibrotic effects. We identified Relm-α as one important player in the pathway from IL-4Rα signaling in macrophages to the induction of lysyl hydroxylase 2 (LH2), an enzyme that directs persistent pro-fibrotic collagen cross-links, in fibroblasts. Notably, Relm-ß induced LH2 in human fibroblasts, and expression of both factors was increased in lipodermatosclerosis, a condition of excessive human skin fibrosis. Collectively, our findings provide mechanistic insights into the link between type 2 immunity and initiation of pro-fibrotic pathways.


Subject(s)
Cicatrix/etiology , Collagen/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Macrophages/metabolism , Receptors, Cell Surface/physiology , Signal Transduction/physiology , Wound Healing/physiology , Animals , Cicatrix/metabolism , Cicatrix/pathology , Coculture Techniques , Dermatitis/metabolism , Dermatitis/pathology , Fibroblasts/metabolism , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Interleukins/physiology , Mice , Mice, Inbred BALB C , Mice, Knockout , Microfibrils/metabolism , Microfibrils/ultrastructure , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/biosynthesis , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Receptors, Cell Surface/deficiency , Scleroderma, Localized/metabolism , Scleroderma, Localized/pathology , Skin/injuries , Skin/metabolism , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...