Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 5219(1): 72-82, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-37044879

ABSTRACT

Herein we report the first molecular assessment of intra-species genetic variation and interrelationships within the Rio Grande Chirping frog, Eleutherodactylus campi. We analyzed 548 base pairs of 16S rRNA gene for 71 ingroup individuals belonging to the genus Eleutherodactylus (including 42 E. campi sampled from 15 localities in the United States and Mexico) and four outgroup samples. By unveiling two highly divergent and geographically structured clades within E. campi this study provides a novel phylogenetic placement of E. campi populations north and south of the Rio Grande Valley as sister groups to each other. The observed level of genetic divergence between these two clades (5.8%) is, on average, comparable to or greater than the levels of divergence found between several currently valid amphibian species pairs. Estimates of Time to Most Common Ancestor (TMRCA) indicate that the phylogeographic split between the two E. campi clades may have occurred 7.6 MYA (i.e., late Miocene), consistent with the geologic history of southwestern North America. The study also confirms that south Texas served as the source population for populations of E. campi in its introduced range (i.e., Alabama, Louisiana, and Texas). Overall, this molecular study indicates that E. campi consists of two deeply divergent lineages corresponding to its populations north and south of Rio Grande Valley. These results suggest that the recovered lineages may represent independent species and thereby highlight the need for further research to clarify their status.


Subject(s)
Anura , DNA, Mitochondrial , Animals , Anura/genetics , Phylogeny , RNA, Ribosomal, 16S , DNA, Mitochondrial/genetics , Genetic Variation
2.
Anat Sci Int ; 95(1): 67-75, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31338726

ABSTRACT

Circumscapular pain is a frequent complaint in clinical practice. The dorsal scapular and long thoracic nerves course through the neck, where they may become entrapped between or within adjacent scalene muscles. Additionally, a high frequency of brachial plexus "piercing" variants have recently been documented, and it is unclear how they influence branching patterns distally along the brachial plexus. In the project reported here we strived to identify and quantify variations in dorsal scapular nerve and long thoracic nerve secondary to brachial plexus piercing variation. Ninety brachial plexuses from human cadavers (45 female/45 male) were evaluated to identify nerve branching patterns, specifically piercing versus non-piercing variants in the brachial plexus roots and nerves. Anatomical entrapment of the dorsal scapular nerve and long thoracic nerve was found in high frequencies (60.8% and 44.6%, respectively). Anomalous brachial plexus piercing variants were associated with higher frequencies of distal nerve branches also coursing through the scalene musculature, and there was a statistically significant correlation between brachial plexus and long thoracic nerve piercings (p = 0.027). Anatomical entrapment of nerves within scalene musculature is common and may be causative factors for idiopathic circumscapular pain, dorsalgia, and dysfunction of scapulohumeral rhythm. This study revealed a link between anatomical arrangement of the brachial plexus and occurrence of long thoracic nerve entrapment, which may lead to a series of cascading neurologic effects in which affected individuals may suffer from increased incidence of thoracic outlet syndrome and long thoracic nerve entrapment resulting in additional symptoms of interscapular pain and compromised shoulder mobility.


Subject(s)
Anatomic Variation , Brachial Plexus/anatomy & histology , Scapula/innervation , Thoracic Nerves/anatomy & histology , Humans , Thoracic Outlet Syndrome/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...