Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-38070877

ABSTRACT

The gut microbiome plays an important role in the health and fitness of hosts. While previous studies have characterized the importance of various ecological and evolutionary factors in shaping the composition of the gut microbiome, most studies have been cross-sectional in nature, ignoring temporal variation. Thus, it remains unknown how these same factors might affect the stability and dynamics of the gut microbiome over time, resulting in variation across the tree of life. Here, we used samples collected in each of four seasons for three taxa: the herbivorous southern white rhinoceros (Ceratotherium simum simum, n = 5); the carnivorous Sumatran tiger (Panthera tigris sumatrae, n = 5); and the red panda (Ailurus fulgens, n = 9), a herbivorous carnivore that underwent a diet shift in its evolutionary history from carnivory to a primarily bamboo-based diet. We characterize the variability of the gut microbiome among these three taxa across time to elucidate the influence of diet and host species on these dynamics. Altogether, we found that red pandas exhibit marked seasonal variation in their gut microbial communities, experiencing both high microbial community turnover and high variation in how individual red panda's gut microbiota respond to seasonal changes. Conversely, while the gut microbiota of rhinoceros change throughout the year, all individuals respond in the same way to seasonal changes. Tigers experience relatively low levels of turnover throughout the year, yet the ways in which individuals respond to seasonal transitions are highly varied. We highlight how the differences in microbiome richness and network connectivity between these three species may affect the level of temporal stability in the gut microbiota across the year.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Seasons , Cross-Sectional Studies , RNA, Ribosomal, 16S , Diet/veterinary , Perissodactyla
3.
Microb Biotechnol ; 16(9): 1736-1744, 2023 09.
Article in English | MEDLINE | ID: mdl-37247194

ABSTRACT

Climate change has rapidly altered many ecosystems, with detrimental effects for biodiversity across the globe. In recent years, it has become increasingly apparent that the microorganisms that live in and on animals can substantially affect host health and physiology, and the structure and function of these microbial communities can be highly sensitive to environmental variables. To date, most studies have focused on the effects of increasing mean temperature on gut microbiota, yet other aspects of climate are also shifting, including temperature variation, seasonal dynamics, precipitation and the frequency of severe weather events. This array of environmental pressures might interact in complex and non-intuitive ways to impact gut microbiota and consequently alter animal fitness. Therefore, understanding the impacts of climate change on animals requires a consideration of multiple types of environmental stressors and their interactive effects on gut microbiota. Here, we present an overview of some of the major findings in research on climatic effects on microbial communities in the animal gut. Although ample evidence has now accumulated that shifts in mean temperature can have important effects on gut microbiota and their hosts, much less work has been conducted on the effects of other climatic variables and their interactions. We provide recommendations for additional research needed to mechanistically link climate change with shifts in animal gut microbiota and host fitness.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Gastrointestinal Microbiome/physiology , Climate Change , Global Warming , Biodiversity
4.
Sci Rep ; 13(1): 3163, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823208

ABSTRACT

Scent originates from excretions and secretions, and its chemical complexity in mammals translates into a diverse mode of signalling. Identifying how information is encoded can help to establish the mechanisms of olfactory communication and the use of odours as chemical signals. Building upon existing behavioural and histological literature, we examined the chemical profile of secretions used for scent marking by a solitary, non-territorial carnivore, the brown bear (Ursus arctos). We investigated the incidence, abundance, and uniqueness of volatile organic compounds (VOCs) from cutaneous glandular secretions of 12 wild brown bears collected during late and post-breeding season, and assessed whether age-sex class, body site, and individual identity explained profile variation. VOC profiles varied in the average number of compounds, compound incidence, and compound abundance by age-sex class and individual identity (when individuals were grouped by sex), but not by body site. Mature males differed from other age-sex classes, secreting fewer compounds on average with the least variance between individuals. Compound uniqueness varied by body site and age for both males and females and across individuals. Our results indicate that brown bear skin-borne secretions may facilitate age-sex class and individual recognition, which can contribute towards further understanding of mating systems and social behaviour.


Subject(s)
Ursidae , Humans , Male , Animals , Female , Individuality , Social Behavior , Pheromones , Smell , Animals, Wild
5.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Article in English | MEDLINE | ID: mdl-35798960

ABSTRACT

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Subject(s)
Metadata , Tandem Mass Spectrometry , Humans , Metabolomics/methods
6.
Reprod Fertil Dev ; 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34148562

ABSTRACT

Anurans can display a host of intriguing sexual syndromes, including hermaphroditism and sex reversal. Using a multifaceted approach for diagnosing and characterising hermaphroditism in the endangered anuran species Rana mucosa, we tracked changes in female reproductive status using hormone monitoring, ultrasound examinations, individual life history, fertilisation records and post-mortem findings. Seven individuals originally sexed as females developed secondary male sexual characteristics, behaviour and hormone profiles and, in some cases, had testicular tissue despite having previously laid eggs. Our results suggest that reproductive technologies can shed light on life history patterns and reproductive anomalies that may affect endangered anuran survival.

7.
Gen Comp Endocrinol ; 292: 113437, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32061639

ABSTRACT

The microbiome regulates endocrine systems and influences many aspects of hormone signaling. Using examples from different animal taxa, we highlight the state of the science in microbiome research as it relates to endocrinology and endocrine disruption research. Using a comparative approach discussing fish, birds, and mammals, we demonstrate the bidirectional interaction between microbiota and hormone systems, presenting concepts that include (1) gastrointestinal microbiome regulation of the neuroendocrine feeding axis; (2) stress hormones and microbial communities; (3) the role of site-specific microbiota in animal reproduction; (4) microbiome effects on the neuroendocrine systems and behavior; and (5) novel mechanisms of endocrine disruption through the microbiome. This mini-review demonstrates that hormones can directly affect the richness and diversity of microbiota and conversely, microbiota can influence hormone production and mediate their functions in animals. In addition, microbiota can influence the action of a diverse range of neurotransmitters and neuropeptides in the central nervous system, which can lead to behavioral disruptions. As many animals have species-specific reproductive behaviors, it is important to understand how shifts in the microbiota relate to these complex interactions between sexes. This is especially important for captive animals on specialized diets, and there are significant implications for microbiome research in conservation and reproductive biology. For example, microbial metabolites may modify motility of gametes or modulate hormone-receptor interactions in reproductive tissues. Thus, efforts to incorporate metabolomics into the science of microbiome-endocrine relationships, both those produced by the host and those generated from microbial metabolism, are increasingly needed. These concepts have fostered an exciting emerging era in comparative endocrinology.


Subject(s)
Endocrine System/microbiology , Microbiota , Models, Animal , Animals , Endocrine Disruptors/toxicity , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Microbiota/drug effects , Reproduction/drug effects
8.
mBio ; 10(2)2019 04 09.
Article in English | MEDLINE | ID: mdl-30967461

ABSTRACT

With recent poaching of southern white rhinoceros (SWR [Ceratotherium simum simum]) reaching record levels, the need for a robust assurance population is urgent. However, the global captive SWR population is not currently self-sustaining due to the reproductive failure of captive-born females. Dietary phytoestrogens have been proposed to play a role in this phenomenon, and recent work has demonstrated a negative relationship between diet estrogenicity and fertility of captive-born female SWR. To further examine this relationship, we compared gut microbial communities, fecal phytoestrogens, and fertility of SWR to those of another rhinoceros species-the greater one-horned rhinoceros (GOHR [Rhinoceros unicornis]), which consumes a similar diet but exhibits high levels of fertility in captivity. Using 16S rRNA amplicon sequencing and mass spectrometry, we identified a species-specific fecal microbiota and three dominant fecal phytoestrogen profiles. These profiles exhibited various levels of estrogenicity when tested in an in vitro estrogen receptor activation assay for both rhinoceros species, with profiles dominated by the microbial metabolite equol stimulating the highest levels of receptor activation. Finally, we found that SWR fertility varies significantly not only with respect to phytoestrogen profile, but also with respect to the abundance of several bacterial taxa and microbially derived phytoestrogen metabolites. Taken together, these data suggest that in addition to species differences in estrogen receptor sensitivity to phytoestrogens, reproductive outcomes may be driven by the gut microbiota's transformation of dietary phytoestrogens in captive SWR females.IMPORTANCE Southern white rhinoceros (SWR) poaching has reached record levels, and captive infertility has rendered SWR assurance populations no longer self-sustaining. Previous work has identified dietary phytoestrogens as a likely cause of this problem. Here, we investigate the role of gut microbiota in this phenomenon by comparing two rhinoceros species to provide the first characterizations of gut microbiomes for any rhinoceros species. To our knowledge, our approach, combining parallel sequencing, mass spectrometry, and estrogen receptor activation assays, provides insight into the relationship between microbially mediated phytoestrogen metabolism and fertility that is novel for any vertebrate species. With this information, we plan to direct future work aimed at developing strategies to improve captive reproduction in the hope of alleviating their threat of extinction.


Subject(s)
Gastrointestinal Microbiome , Infertility/veterinary , Perissodactyla/microbiology , Phytoestrogens/analysis , Animals , Animals, Zoo , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Feces/chemistry , Infertility/etiology , Mass Spectrometry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Conserv Physiol ; 6(1): cox075, 2018.
Article in English | MEDLINE | ID: mdl-29399361

ABSTRACT

Mammalian herbivores have developed numerous adaptations to utilize their plant-based diets including a modified gastrointestinal tract (GIT) and symbiosis with a GIT microbiota that plays a major role in digestion and the maintenance of host health. The red panda (Ailurus fulgens) is a herbivorous carnivore that lacks the specialized GIT common to other herbivores but still relies on microorganisms for survival on its almost entirely bamboo diet. The GIT microbiota is of further importance in young red pandas, as high cub mortality is problematic and has been attributed to failure to meet nutritional requirements. To gain insight into the establishment of the GIT microbiota of red pandas, we examined microbial communities in two individuals following dietary changes associated with weaning using next-generation 16S rRNA Illumina MiSeq paired-end sequencing of faecal samples. Across all four stages (pre-weaning, during weaning, post-weaning and adult), the GIT microbial community displayed low diversity and was dominated by bacteria in the phylum Firmicutes with lesser contributions from the Proteobacteria. A core community was found consistently across all weaning stages and included species within the taxa Escherichia-Shigella, Streptococcus, Clostridium and an unclassified Clostridiaceae. Analysis of the overall community composition and structure showed that although the GIT microbiota is established early in red pandas, dietary changes during weaning further shape the community and are correlated with the presence of new bacterial species. This work is the first analysis of the GIT microbiota for red panda cubs during weaning and provides a framework for understanding how diet and host microbiota impact the development of these threatened animals.

10.
Front Microbiol ; 7: 661, 2016.
Article in English | MEDLINE | ID: mdl-27199976

ABSTRACT

Dietary shifts can result in changes to the gastrointestinal tract (GIT) microbiota, leading to negative outcomes for the host, including inflammation. Giant pandas (Ailuropoda melanoleuca) are physiologically classified as carnivores; however, they consume an herbivorous diet with dramatic seasonal dietary shifts and episodes of chronic GIT distress with symptoms including abdominal pain, loss of appetite and the excretion of mucous stools (mucoids). These episodes adversely affect the overall nutritional and health status of giant pandas. Here, we examined the fecal microbiota of two giant pandas' non-mucoid and mucoid stools and compared these to samples from a previous winter season that had historically few mucoid episodes. To identify the microbiota present, we isolated and sequenced the 16S rRNA using next-generation sequencing. Mucoids occurred following a seasonal feeding switch from predominately bamboo culm (stalk) to leaves. All fecal samples displayed low diversity and were dominated by bacteria in the phyla Firmicutes and to a lesser extent, Proteobacteria. Fecal samples immediately prior to mucoid episodes had lower microbial diversity as compared to mucoids. Mucoids were mostly comprised of common mucosal-associated taxa including Streptococcus and Leuconostoc species, and exhibited increased abundance for bacteria in the family Pasteurellaceae. Taken together, these findings indicate that mucoids may represent an expulsion of the mucosal lining that is driven by changes in diet. We suggest that these occurrences serve to reset their GIT microbiota following changes in bamboo part preference, as giant pandas have retained a carnivorous GIT anatomy while shifting to an herbivorous diet.

SELECTION OF CITATIONS
SEARCH DETAIL
...