Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775155

ABSTRACT

Physician-scientists play a crucial role in advancing medical knowledge and patient care, yet the long periods of time required to complete training may impede expansion of this workforce. We examined the relationship between postgraduate training and time to receipt of NIH or Veterans Affairs career development awards (CDAs) for physician-scientists in internal medicine. Data from NIH RePORTER were analyzed for internal medicine residency graduates who received specific CDAs (K08, K23, K99, or IK2) in 2022. Additionally, information on degrees and training duration was collected. Internal medicine residency graduates constituted 19% of K awardees and 28% of IK2 awardees. Of MD-PhD internal medicine-trained graduates who received a K award, 92% received a K08 award; of MD-only graduates who received a K award, a majority received a K23 award. The median time from medical school graduation to CDA was 9.6 years for K awardees and 10.2 years for IK2 awardees. The time from medical school graduation to K or IK2 award was shorter for US MD-PhD graduates than US MD-only graduates. We propose that the time from medical school graduation to receipt of CDAs must be shortened to accelerate training and retention of physician-scientists.


Subject(s)
Education, Medical, Graduate , Internal Medicine , Humans , Internal Medicine/education , United States , Internship and Residency/statistics & numerical data , Biomedical Research/education , Physicians/statistics & numerical data , Research Personnel/statistics & numerical data , Research Personnel/education , Time Factors , Awards and Prizes , National Institutes of Health (U.S.) , United States Department of Veterans Affairs , Male , Female
2.
J Nutr ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38467388
3.
J Allergy Clin Immunol ; 153(3): 759-771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37852329

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic immune mediated inflammatory disorder of the esophagus. It is still unknown why children and adults present differently, and there is little evidence about why it is more common in men than women. OBJECTIVE: Our aim was to synthesize published and unpublished esophageal bulk RNA-sequencing (RNA-seq) data to gain novel insights into the pathobiology of EoE and examine the differences in EoE transcriptome by sex and age group. METHODS: Esophageal bulk RNA-seq data from 5 published and 2 unpublished studies resulting in 137 subjects (EoE: N = 76; controls: N = 61) were analyzed. For overall analysis, combined RNA-seq data of patients with EoE were compared with those of controls and subgroup analysis was conducted in patients with EoE by age of the patient (children [<18 years] vs adults [≥18 years]) and sex (female vs male). Gene-set enrichment analysis, ingenuity pathway analysis (IPA), cell-type analysis, immunohistochemistry, and T-cell or B-cell receptor analysis were performed. RESULTS: Overall analysis identified dysregulation of new genes in EoE compared with controls. IPA revealed that EoE is characterized by a mixed inflammatory response compared with controls. Cell-type analysis showed that cell composition varied with age: children had more mast cells, whereas adults had more macrophages. Finally, gene-set enrichment analysis and IPA revealed pathways that were differentially regulated in adults versus children and male versus female patients with EoE. CONCLUSIONS: Using a unique approach to analyze bulk RNA-seq data, we found that EoE is characterized by a mixed inflammatory response, and the EoE transcriptome may be influenced by age and sex. These findings enhance insights into the molecular mechanisms of EoE.


Subject(s)
Eosinophilic Esophagitis , Child , Adult , Humans , Male , Female , Adolescent , Eosinophilic Esophagitis/genetics , Transcriptome , Immunohistochemistry , RNA
4.
Gut Microbes ; 15(2): 2264456, 2023 12.
Article in English | MEDLINE | ID: mdl-37815528

ABSTRACT

Several probiotic-derived factors have been identified as effectors of probiotics for exerting beneficial effects on the host. However, there is a paucity of studies to elucidate mechanisms of their functions. p40, a secretory protein, is originally isolated from a probiotic bacterium, Lactobacillus rhamnosus GG. Thus, this study aimed to apply structure-functional analysis to define the functional peptide of p40 that modulates the epigenetic program in intestinal epithelial cells for sustained prevention of colitis. In silico analysis revealed that p40 is composed of a signal peptide (1-28 residues) followed by a coiled-coil domain with uncharacterized function on the N-terminus, a linker region, and a ß-sheet domain with high homology to CHAP on the C-terminus. Based on the p40 three-dimensional structure model, two recombinant p40 peptides were generated, p40N120 (28-120 residues) and p40N180 (28-180 residues) that contain first two and first three coiled coils, respectively. Compared to full-length p40 (p40F) and p40N180, p40N120 showed similar or higher effects on up-regulating expression of Setd1b (encoding a methyltransferase), promoting mono- and trimethylation of histone 3 on lysine 4 (H3K4me1/3), and enhancing Tgfb gene expression and protein production that leads to SMAD2 phosphorylation in human colonoids and a mouse colonic epithelial cell line. Furthermore, supplementation with p40F and p40N120 in early life increased H3K4me1, Tgfb expression and differentiation of regulatory T cells (Tregs) in the colon, and mitigated disruption of epithelial barrier and inflammation induced by DSS in adult mice. This study reveals the structural feature of p40 and identifies a functional peptide of p40 that could maintain intestinal homeostasis.


Subject(s)
Colitis , Gastrointestinal Microbiome , Probiotics , Adult , Humans , Animals , Mice , Bacterial Proteins/genetics , Peptides , Colitis/prevention & control , Probiotics/pharmacology
5.
Elife ; 122023 10 02.
Article in English | MEDLINE | ID: mdl-37782020

ABSTRACT

The growing complexities of clinical medicine and biomedical research have clouded the career path for physician-scientists. In this perspective piece, we address one of the most opaque career stage transitions along the physician-scientist career path, the transition from medical school to research-focused internal medicine residency programs, or physician-scientist training programs (PSTPs). We present the perspectives of medical scientist training program (MSTP) and PSTP directors on critical features of PSTPs that can help trainees proactively align their clinical and scientific training for successful career development. We aim to provide both trainees and MSTP directors with a conceptual framework to better understand and navigate PSTPs. We also offer interview-specific questions to help trainees gather data and make informed decisions in choosing a residency program that best supports their career.


Subject(s)
Biomedical Research , Internship and Residency , Physicians , Humans , Education, Graduate , Biomedical Research/education , Career Choice
6.
Cell Mol Gastroenterol Hepatol ; 16(6): 961-983, 2023.
Article in English | MEDLINE | ID: mdl-37574015

ABSTRACT

BACKGROUND AND AIMS: Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), as their role in ESCC is unknown. METHODS: Eosinophils were enumerated in tissues from 2 ESCC cohorts. Mice were treated with 4-NQO for 8 weeks to induce precancer or 16 weeks to induce carcinoma. The eosinophil number was modified by a monoclonal antibody to interleukin-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 (Ccl11-/-). Esophageal tissue and eosinophil-specific RNA sequencing was performed to understand eosinophil function. Three-dimensional coculturing of eosinophils with precancer or cancer cells was done to ascertain direct effects of eosinophils. RESULTS: Activated eosinophils are present in higher numbers in early-stage vs late-stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in precancer vs cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with precancer. Eosinophil depletion using 3 mouse models (Ccl11-/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against precancer and carcinoma. Tissue and eosinophil RNA sequencing revealed eosinophils drive oxidative stress in precancer. In vitro coculturing of eosinophils with precancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with NAC, a reactive oxygen species scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 protumorigenic pathways. CONCLUSION: Eosinophils likely protect against ESCC through reactive oxygen species release during degranulation and suppression of IL-17.


Subject(s)
Carcinoma , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Mice , Eosinophils , Interleukin-17 , Reactive Oxygen Species
7.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333285

ABSTRACT

Background/Aims: Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), since their role in ESCC is unknown. Methods: Eosinophils were enumerated in tissues from two ESCC cohorts. Mice were treated with 4-nitroquinolone-1-oxide (4-NQO) for 8 weeks to induce pre-cancer or 16 weeks to induce carcinoma. Eosinophil number was modified by monoclonal antibody to IL-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 ( Ccl11 -/- ). Esophageal tissue and eosinophil specific RNA-sequencing was performed to understand eosinophil function. 3-D co-culturing of eosinophils with pre-cancer or cancer cells was done to ascertain direct effects of eosinophils. Results: Activated eosinophils are present in higher numbers in early stage versus late stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in pre-cancer versus cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with pre-cancer. Eosinophil depletion using three mouse models ( Ccl11 -/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against pre-cancer and carcinoma. Tissue and eosinophil RNA-sequencing revealed eosinophils drive oxidative stress in pre-cancer. In vitro co-culturing of eosinophils with pre-cancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with N-acetylcysteine, a reactive oxygen species (ROS) scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 pro-tumorigenic pathways. Conclusion: Eosinophils likely protect against ESCC through ROS release during degranulation and suppression of IL-17.

8.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37166989

ABSTRACT

Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , Selenium , Mice , Animals , Humans , Wnt Signaling Pathway , Selenoprotein P/genetics , Selenoprotein P/metabolism , Colorectal Neoplasms/pathology , Selenium/metabolism , Carcinogenesis/genetics , Adenoma/metabolism , Gene Expression Regulation, Neoplastic , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism
9.
Cell Rep ; 42(2): 112128, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36807140

ABSTRACT

The cytokine interleukin-23 (IL-23) is involved in the pathogenesis of inflammatory and autoimmune conditions including inflammatory bowel disease (IBD). IL23R is enriched in intestinal Tregs, yet whether IL-23 modulates intestinal Tregs remains unknown. Here, investigating IL-23R signaling in Tregs specifically, we show that colonic Tregs highly express Il23r compared with Tregs from other compartments and their frequency is reduced upon IL-23 administration and impairs Treg suppressive function. Similarly, colonic Treg frequency is increased in mice lacking Il23r specifically in Tregs and exhibits a competitive advantage over IL-23R-sufficient Tregs during inflammation. Finally, IL-23 antagonizes liver X receptor pathway, cellular cholesterol transporter Abca1, and increases Treg apoptosis. Our results show that IL-23R signaling regulates intestinal Tregs by increasing cell turnover, antagonizing suppression, and decreasing cholesterol efflux. These results suggest that IL-23 negatively regulates Tregs in the intestine with potential implications for promoting chronic inflammation in patients with IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Humans , Mice , Colitis/pathology , Forkhead Transcription Factors/metabolism , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Interleukin-23/metabolism , T-Lymphocytes, Regulatory
10.
Front Oncol ; 13: 1276743, 2023.
Article in English | MEDLINE | ID: mdl-38375204

ABSTRACT

Introduction: The pro-inflammatory cytokine interleukin-23 (IL-23) has been implicated in colorectal cancer (CRC). Yet, the cell-specific contributions of IL-23 receptor (IL-23R) signaling in CRC remain unknown. One of the cell types that highly expresses IL-23R are colonic regulatory T cells (Treg cells). The aim of this study was to define the contribution of Treg cell-specific IL-23R signaling in sporadic and inflammation-associated CRC. Methods: In mice, the role of IL-23R in Treg cells in colitis-associated cancer (CAC) was investigated using azoxymethane/dextran sodium sulphate in wild-type Treg cell reporter mice (WT, Foxp3 YFP-iCre), and mice harboring a Treg cell-specific deletion of IL-23 (Il23r ΔTreg). The role of IL-23R signaling in Treg cells in sporadic CRC was examined utilizing orthotopic injection of the syngeneic colon cancer cell line MC-38 submucosally into the colon/rectum of mice. The function of macrophages was studied using clodronate. Finally, single-cell RNA-seq of a previously published dataset in human sporadic cancer was reanalyzed to corroborate these findings. Results: In CAC, Il23r ΔTreg mice had increased tumor size and increased dysplasia compared to WT mice that was associated with decreased tumor-infiltrating macrophages. In the sporadic cancer model, Il23r ΔTreg mice had increased survival and decreased tumor size compared to WT mice. Additionally, MC-38 tumors of Il23r ΔTreg mice exhibited a higher frequency of pro-inflammatory macrophages and IL-17 producing CD4+ T cells. The decreased tumor size in Il23r ΔTreg mice was macrophage-dependent. These data suggest that loss of IL-23R signaling in Treg cells permits IL-17 production by CD4+ T cells that in turn promotes pro-inflammatory macrophages to clear tumors. Finally, analysis of TCGA data and single-cell RNA-seq analysis of a previously published dataset in human sporadic cancer, revealed that IL23R was highly expressed in CRC compared to other cancers and specifically in tumor-associated Treg cells. Conclusion: Inflammation in colorectal carcinogenesis differs with respect to the contribution of IL-23R signaling in regulatory T cells.

11.
J Cell Sci ; 135(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36217793

ABSTRACT

The gene mutated in colorectal cancer (MCC) encodes a coiled-coil protein implicated, as its name suggests, in the pathogenesis of hereditary human colon cancer. To date, however, the contributions of MCC to intestinal homeostasis and disease remain unclear. Here, we examine the subcellular localization of MCC, both at the mRNA and protein levels, in the adult intestinal epithelium. Our findings reveal that Mcc transcripts are restricted to proliferating crypt cells, including Lgr5+ stem cells, where the Mcc protein is distinctly associated with the centrosome. Upon intestinal cellular differentiation, Mcc is redeployed to the apical domain of polarized villus cells where non-centrosomal microtubule organizing centers (ncMTOCs) are positioned. Using intestinal organoids, we show that the shuttling of the Mcc protein depends on phosphorylation by casein kinases 1δ and ε, which are critical modulators of WNT signaling. Together, our findings support a role for MCC in establishing and maintaining the cellular architecture of the intestinal epithelium as a component of both the centrosome and ncMTOC.


Subject(s)
Centrosome , Microtubule-Organizing Center , Humans , Microtubule-Organizing Center/metabolism , Centrosome/metabolism , Intestines , Cell Differentiation , Proteins/metabolism , Intestinal Mucosa/metabolism
12.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: mdl-36098684

ABSTRACT

Physician-scientists have epitomized the blending of deep, rigorous impactful curiosity with broad attention to human health for centuries. While we aspire to prepare all physicians with an appreciation for these skills, those who apply them to push the understanding of the boundaries of human physiology and disease, to advance treatments, and to increase our knowledge base in the arena of human health can fulfill an essential space for our society, economies, and overall well-being. Working arm in arm with basic and translational scientists as well as expert clinicians, as peers in both groups, this career additionally serves as a bridge to facilitate the pace and direction of research that ultimately impacts health. Globally, there are remarkable similarities in challenges in this career path, and in the approaches employed to overcome them. Herein, we review how different countries train physician-scientists and suggest strategies to further bolster this career path.


Subject(s)
Biomedical Research , Physicians , Biomedical Research/education , Career Choice , Humans
13.
Med Sci Educ ; 32(2): 523-528, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35528304

ABSTRACT

Physician-scientists are uniquely positioned to achieve significant biomedical advances to improve the human condition. Their clinical and scientific training allows them to bridge fields and contribute to cutting-edge, clinically relevant research. The need for a highly skilled physician-scientist workforce has never been more acute. We propose a competency-guided program design (CGPD) framework that focuses on core skills to enhance the physician-scientist training curriculum. In partnership with clinical and graduate curricula, the CGPD framework can be employed as a tool to meaningfully integrate physician-scientist training, address barriers to attract and sustain the physician-scientist workforce, and avoid overprogramming that detracts from a solid foundation of clinical and graduate research training.

14.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35503250

ABSTRACT

Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-/- colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/genetics , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Dextran Sulfate/toxicity , Humans , Inflammatory Bowel Diseases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics
15.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35315364

ABSTRACT

Postgraduate physician-scientist training programs (PSTPs) enhance the experiences of physician-scientist trainees following medical school graduation. PSTPs usually span residency and fellowship training, but this varies widely by institution. Applicant competitiveness for these programs would be enhanced, and unnecessary trainee anxiety relieved, by a clear understanding of what factors define a successful PSTP matriculant. Such information would also be invaluable to PSTP directors and would allow benchmarking of their admissions processes with peer programs. We conducted a survey of PSTP directors across the US to understand the importance they placed on components of PSTP applications. Of 41 survey respondents, most were from internal medicine and pediatrics residency programs. Of all components in the application, two elements were considered very important by a majority of PSTP directors: (a) having one or more first-author publications and (b) the thesis advisor's letter. Less weight was consistently placed on factors often considered more relevant for non-physician-scientist postgraduate applicants - such as US Medical Licensing Examination scores, awards, and leadership activities. The data presented here highlight important metrics for PSTP applicants and directors and suggest that indicators of scientific productivity and commitment to research outweigh traditional quantitative measures of medical school performance.


Subject(s)
Internship and Residency , Physicians , Child , Fellowships and Scholarships , Humans , Research Personnel , Surveys and Questionnaires
16.
Front Nutr ; 8: 667587, 2021.
Article in English | MEDLINE | ID: mdl-34026810

ABSTRACT

Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.

17.
Nature ; 593(7858): 282-288, 2021 05.
Article in English | MEDLINE | ID: mdl-33828302

ABSTRACT

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Nutrients/metabolism , Tumor Microenvironment , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Glucose/metabolism , Glutamine/metabolism , Humans , Lipid Metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Tumor Microenvironment/immunology
18.
Gastroenterology ; 160(5): 1694-1708.e3, 2021 04.
Article in English | MEDLINE | ID: mdl-33388316

ABSTRACT

BACKGROUND & AIMS: Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS: Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS: Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS: Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.


Subject(s)
Colitis, Ulcerative/metabolism , Colitis-Associated Neoplasms/prevention & control , Colitis/metabolism , Colon/metabolism , Intestinal Mucosa/metabolism , Oxidative Stress , Selenoprotein P/metabolism , Adolescent , Animals , Azoxymethane , Case-Control Studies , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Child , Child, Preschool , Colitis/chemically induced , Colitis/genetics , Colitis, Ulcerative/genetics , Colitis-Associated Neoplasms/chemically induced , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/metabolism , Colon/pathology , DNA Damage , Dextran Sulfate , Disease Models, Animal , Female , Genomic Instability , Humans , Intestinal Mucosa/pathology , Liver/metabolism , Male , Mice, Knockout , Myeloid Cells/metabolism , Selenoprotein P/genetics
19.
Adv Biol Regul ; 76: 100694, 2020 05.
Article in English | MEDLINE | ID: mdl-32019729

ABSTRACT

Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.


Subject(s)
Anemia, Iron-Deficiency/genetics , Hemochromatosis Protein/genetics , Hemochromatosis/genetics , Iron/metabolism , Nucleotidases/genetics , Sulfur/metabolism , Anemia, Iron-Deficiency/metabolism , Anemia, Iron-Deficiency/pathology , Anemia, Iron-Deficiency/prevention & control , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Diet , Disease Models, Animal , Female , Gene Expression Regulation , Hemochromatosis/metabolism , Hemochromatosis/pathology , Hemochromatosis/prevention & control , Hemochromatosis Protein/metabolism , Homeostasis/genetics , Homozygote , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Liver/metabolism , Liver/pathology , Male , Methionine/administration & dosage , Methionine/deficiency , Mice , Mice, Knockout , Mutation , Nucleotidases/metabolism , Organoids/metabolism , Organoids/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...