Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Nat Immunol ; 25(6): 994-1006, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671323

ABSTRACT

The lung is constantly exposed to the outside world and optimal adaptation of immune responses is crucial for efficient pathogen clearance. However, mechanisms that lead to lung-associated macrophages' functional and developmental adaptation remain elusive. To reveal such mechanisms, we developed a reductionist model of environmental intranasal ß-glucan exposure, allowing for the detailed interrogation of molecular mechanisms of pulmonary macrophage adaptation. Employing single-cell transcriptomics, high-dimensional imaging and flow cytometric characterization paired with in vivo and ex vivo challenge models, we reveal that pulmonary low-grade inflammation results in the development of apolipoprotein E (ApoE)-dependent monocyte-derived alveolar macrophages (ApoE+CD11b+ AMs). ApoE+CD11b+ AMs expressed high levels of CD11b, ApoE, Gpnmb and Ccl6, were glycolytic, highly phagocytic and produced large amounts of interleukin-6 upon restimulation. Functional differences were cell intrinsic, and myeloid cell-specific ApoE ablation inhibited Ly6c+ monocyte to ApoE+CD11b+ AM differentiation dependent on macrophage colony-stimulating factor secretion, promoting ApoE+CD11b+ AM cell death and thus impeding ApoE+CD11b+ AM maintenance. In vivo, ß-glucan-elicited ApoE+CD11b+ AMs limited the bacterial burden of Legionella pneumophilia after infection and improved the disease outcome in vivo and ex vivo in a murine lung fibrosis model. Collectively these data identify ApoE+CD11b+ AMs generated upon environmental cues, under the control of ApoE signaling, as an essential determinant for lung adaptation enhancing tissue resilience.


Subject(s)
Apolipoproteins E , Lectins, C-Type , Macrophages, Alveolar , Mice, Inbred C57BL , beta-Glucans , Animals , Mice , Adaptation, Physiological/immunology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , CD11b Antigen/metabolism , Cell Differentiation , Lectins, C-Type/metabolism , Lung/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism
2.
s.l; s.n; 2006. 44 p. ilus, tab.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1241811

ABSTRACT

Leprosy is best understood as two conjoined diseases. The first is a chronic mycobacterial infection that elicits an extraordinary range of cellular immune responses in humans. The second is a peripheral neuropathy that is initiated by the infection and the accompanying immunological events. The infection is curable but not preventable, and leprosy remains a major global health problem, especially in the developing world, publicity to the contrary notwithstanding. Mycobacterium leprae remains noncultivable, and for over a century leprosy has presented major challenges in the fields of microbiology, pathology, immunology, and genetics; it continues to do so today. This review focuses on recent advances in our understanding of M. leprae and the host response to it, especially concerning molecular identification of M. leprae, knowledge of its genome, transcriptome, and proteome, its mechanisms of microbial resistance, and recognition of strains by variable-number tandem repeat analysis. Advances in experimental models include studies in gene knockout mice and the development of molecular techniques to explore the armadillo model. In clinical studies, notable progress has been made concerning the immunology and immunopathology of leprosy, the genetics of human resistance, mechanisms of nerve injury, and chemotherapy. In nearly all of these areas, however, leprosy remains poorly understood compared to other major bacterial diseases.


Subject(s)
Humans , Animals , Mice , Anti-Infective Agents , Schwann Cells , Peripheral Nervous System Diseases , Drug Resistance, Bacterial , Genes, Bacterial , Genome, Bacterial , Leprostatic Agents , Leprosy , Immunity, Cellular , Immunity, Innate , Disease Models, Animal , Mycobacterium leprae , Peripheral Nerves , Genetic Predisposition to Disease , Bacterial Proteins , Polymerase Chain Reaction , Research Support, N.I.H., Extramural , Disease Susceptibility , Bacterial Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL