Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 4072, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492868

ABSTRACT

The human PKD2 locus encodes Polycystin-2 (PC2), a TRPP channel that localises to several distinct cellular compartments, including the cilium. PKD2 mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD) and affect many cellular pathways. Data underlining the importance of ciliary PC2 localisation in preventing PKD are limited because PC2 function is ablated throughout the cell in existing model systems. Here, we dissect the ciliary role of PC2 by analysing mice carrying a non-ciliary localising, yet channel-functional, PC2 mutation. Mutants develop embryonic renal cysts that appear indistinguishable from mice completely lacking PC2. Despite not entering the cilium in mutant cells, mutant PC2 accumulates at the ciliary base, forming a ring pattern consistent with distal appendage localisation. This suggests a two-step model of ciliary entry; PC2 first traffics to the cilium base before TOP domain dependent entry. Our results suggest that PC2 localisation to the cilium is necessary to prevent PKD.


Subject(s)
Cilia/metabolism , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/metabolism , Animals , Disease Models, Animal , Embryo, Mammalian/metabolism , Female , Fibroblasts/metabolism , Glycosylation , Humans , Kidney/embryology , Male , Mice, Inbred C57BL , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , TRPP Cation Channels/genetics
2.
PLoS Genet ; 12(6): e1006070, 2016 06.
Article in English | MEDLINE | ID: mdl-27272319

ABSTRACT

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.


Subject(s)
Body Patterning/genetics , Cilia/genetics , Membrane Proteins/genetics , Mesoderm/metabolism , Nodal Protein/genetics , TRPP Cation Channels/genetics , Animals , Embryo, Mammalian/cytology , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/genetics , Mesoderm/embryology , Mice , Mice, Inbred C3H , Mice, Transgenic , Nodal Protein/biosynthesis , Protein Structure, Tertiary , TRPP Cation Channels/antagonists & inhibitors
3.
Development ; 141(20): 3966-77, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25294941

ABSTRACT

Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.


Subject(s)
Cilia/physiology , Gene Expression Regulation, Developmental , Lung/embryology , Transcription Factors/physiology , Animals , Chlamydomonas/metabolism , Cilia/metabolism , Cytoplasmic Dyneins , DNA Damage , Dyneins/metabolism , Genetic Markers , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Mice , Mutation , Phenotype , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic
4.
Hum Mol Genet ; 18(10): 1719-39, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19223390

ABSTRACT

The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data.


Subject(s)
Body Patterning , Down-Regulation , Hedgehog Proteins/metabolism , Polydactyly/metabolism , Proteins/metabolism , Signal Transduction , Spinal Dysraphism/metabolism , Animals , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mutation , Neural Tube/embryology , Neural Tube/metabolism , Polydactyly/embryology , Polydactyly/genetics , Proteins/genetics , Spinal Cord/embryology , Spinal Cord/metabolism , Spinal Dysraphism/embryology , Spinal Dysraphism/genetics
5.
Mol Biochem Parasitol ; 141(1): 1-13, 2005 May.
Article in English | MEDLINE | ID: mdl-15811522

ABSTRACT

Global profiling transcriptomes of parasitic helminths offers the potential to simultaneously identify co-ordinately expressed genes, novel genetic programs and uniquely utilized metabolic pathways, which together provide an extensive and new resource for vaccine and drug discovery. We have exploited this post-genomic approach to fabricate the first oligonucleotide DNA microarray for gene expression analysis of the parasitic trematode Schistosoma mansoni. A total of 17,329 S. mansoni DNA sequences were used to design a microarray consisting of 7335 parasite elements or approximately 50% of this parasite's transcriptome. Here, we describe the design of this new microarray resource and its evaluation by extending studies into gender-associated gene expression in adult schistosomes. We demonstrate a high degree of reproducibility in detecting transcriptional differences among biologically replicated experiments and the ability of the microarray to distinguish between the expression of closely related gene family members. Importantly, for issues related to sexual dimorphism, labour division, gamete production and drug target discovery, 197 transcripts demonstrated a gender-biased pattern of gene expression in the adult schistosome, greatly extending the number of sex-associated genes. These data demonstrate the power of this new resource to facilitate a greater understanding into the biological complexities of schistosome development and maturation useful for identifying novel intervention strategies.


Subject(s)
DNA, Helminth/analysis , Helminth Proteins/genetics , Schistosoma mansoni/genetics , Animals , Female , Gametogenesis/genetics , Gene Expression , Gene Expression Profiling , Male , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Schistosoma mansoni/growth & development , Sexual Maturation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...