Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Toxicol Sci ; 197(1): 38-52, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37788119

ABSTRACT

In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.


Subject(s)
Chemical and Drug Induced Liver Injury , Hepatocytes , Humans , Cells, Cultured , Hepatocytes/metabolism , Coculture Techniques , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Risk Assessment
3.
J Immunother Cancer ; 5(1): 63, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28807001

ABSTRACT

BACKGROUND: T-cell checkpoint blockade and MEK inhibitor combinations are under clinical investigation. Despite progress elucidating the immuno-modulatory effects of MEK inhibitors as standalone therapies, the impact of MEK inhibition on the activity of T-cell checkpoint inhibitors remains incompletely understood. Here we sought to characterize the combined effects of MEK inhibition and anti-CTLA-4 mAb (anti-CTLA-4) therapy, examining effects on both T-cells and tumor microenvironment (TME). METHODS: In mice, the effects of MEK inhibition, via selumetinib, and anti-CTLA-4 on immune responses to keyhole limpet haemocyanin (KLH) immunization were monitored using ex vivo functional assays with splenocytes. In a KRAS-mutant CT26 mouse colorectal cancer model, the impact on the tumor microenvironment (TME) and the spleen were evaluated by flow cytometry. The TME was further examined by gene expression and immunohistochemical analyses. The combination and sequencing of selumetinib and anti-CTLA-4 were also evaluated in efficacy studies using the CT26 mouse syngeneic model. RESULTS: Anti-CTLA-4 enhanced the generation of KLH specific immunity following KLH immunization in vivo; selumetinib was found to reduce, but did not prevent, this enhancement of immune response by anti-CTLA-4 in vivo. In the CT26 mouse model, anti-CTLA-4 treatment led to higher expression levels of the immunosuppressive mediators, Cox-2 and Arg1 in the TME. Combination of anti-CTLA-4 with selumetinib negated this up-regulation of Cox-2 and Arg1, reduced the frequency of CD11+ Ly6G+ myeloid cells, and led to the accumulation of differentiating monocytes at the Ly6C+ MHC+ intermediate state in the tumor. We also report that MEK inhibition had limited impact on anti-CTLA-4-mediated increases in T-cell infiltration and T-cell activation in CT26 tumors. Finally, we show that pre-treatment, but not concurrent treatment, with selumetinib enhanced the anti-tumor activity of anti-CTLA-4 in the CT26 model. CONCLUSION: These data provide evidence that MEK inhibition can lead to changes in myeloid cells and immunosuppressive factors in the tumor, thus potentially conditioning the TME to facilitate improved response to anti-CTLA-4 treatment. In summary, the use of MEK inhibitors to alter the TME as an approach to enhance the activities of immune checkpoint inhibitors warrants further investigation in clinical trials.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Benzimidazoles/administration & dosage , Colorectal Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Benzimidazoles/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cellular Reprogramming/drug effects , Colorectal Neoplasms/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
4.
Oncotarget ; 7(42): 68278-68291, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27626702

ABSTRACT

Antibodies that target cell-surface molecules on T cells can enhance anti-tumor immune responses, resulting in sustained immune-mediated control of cancer. We set out to find new cancer immunotherapy targets by phenotypic screening on human regulatory T (Treg) cells and report the discovery of novel activators of tumor necrosis factor receptor 2 (TNFR2) and a potential role for this target in immunotherapy. A diverse phage display library was screened to find antibody mimetics with preferential binding to Treg cells, the most Treg-selective of which were all, without exception, found to bind specifically to TNFR2. A subset of these TNFR2 binders were found to agonise the receptor, inducing iκ-B degradation and NF-κB pathway signalling in vitro. TNFR2 was found to be expressed by tumor-infiltrating Treg cells, and to a lesser extent Teff cells, from three lung cancer patients, and a similar pattern was also observed in mice implanted with CT26 syngeneic tumors. In such animals, TNFR2-specific agonists inhibited tumor growth, enhanced tumor infiltration by CD8+ T cells and increased CD8+ T cell IFN-γ synthesis. Together, these data indicate a novel mechanism for TNF-α-independent TNFR2 agonism in cancer immunotherapy, and demonstrate the utility of target-agnostic screening in highlighting important targets during drug discovery.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Female , HEK293 Cells , Humans , Jurkat Cells , Mice, Inbred BALB C , NF-kappa B/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy , Phenotype , Receptors, Tumor Necrosis Factor, Type II/agonists , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects
7.
Malar J ; 8: 168, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19624812

ABSTRACT

BACKGROUND: Sero-epidemiological methods are being developed as a tool for rapid assessment of malaria transmission intensity. Simple blood collection methods for use in field settings will make this more feasible. This paper describes validation of such a method, by analysing immunoglobulins from blood retained within immunophoretic rapid diagnostic tests (RDTs) for Plasmodium falciparum. RDTs are now widely used for the diagnosis of malaria and estimation of parasite rates, and this method represents a further use for these devices in malaria control. METHODS: Immunoglobulins eluted from RDTs, designed to detect parasite histidine rich protein-2 (HRP-2), were analysed by indirect ELISA for IgG recognizing the P. falciparum blood stage antigens merozoite surface protein-1(19) (MSP-1(19)) and apical membrane antigen-1 (AMA-1). Optimal storage conditions for RDTs were evaluated by comparing antibody responses from RDTs stored in dry or humid conditions at 4 degrees C or at ambient temperature (with or without air-conditioning) for 7, 31 or 70 days. Antibody levels estimated using 3,700 RDT samples from attendees at health facilities in North-eastern Tanzania were compared with contemporaneously collected filter paper blood spots (FPBS) and used to estimate seroconversion rates. RESULTS: Storage of RDTs at 4 degrees C was optimal for immunoglobulin recovery but short-term storage at ambient temperatures did not substantially affect anti-malarial IgG levels. Results from RDTs were comparable with those from FPBSs, for both antigens. RDT-generated titres tended to be slightly higher than those generated from FPBSs, possibly due to greater recovery of immunoglobulins from RDTs compared to filter paper. Importantly, however, RDT-based seroconversion rates, and hence serological estimates of malaria transmission intensity, agreed closely with those from FPBSs. CONCLUSION: RDTs represent a practical option for collecting blood for sero-epidemiological surveys, with potential cost and logistical advantages over filter paper and other blood collection methods. RDT-based seroepidemiology can be incorporated into routine monitoring of malaria endemicity, providing information to supplement parasite prevalence rates and generating rapid, robust assessment of malaria transmission intensity at minimal extra cost.


Subject(s)
Antigens, Protozoan/blood , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Membrane Proteins/blood , Merozoite Surface Protein 1/blood , Plasmodium falciparum/isolation & purification , Protozoan Proteins/blood , Adolescent , Adult , Animals , Child , Child, Preschool , Diagnostic Tests, Routine/economics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G , Immunologic Factors , Infant , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Male , Middle Aged , Prevalence , Reagent Kits, Diagnostic/standards , Reproducibility of Results , Sensitivity and Specificity , Seroepidemiologic Studies , Tanzania/epidemiology , Young Adult
8.
Traffic ; 8(9): 1190-204, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17605758

ABSTRACT

Intercellular transfer of cell surface proteins is widespread and facilitates several recently discovered means for immune cell communication. Here, we examined the molecular mechanism for intercellular exchange of the natural killer (NK) cell receptor KIR2DL1 and HLA-C, prototypical proteins that swap between NK cells and target cells. Transfer was contact dependent and enhanced for cells expressing cognate receptor/ligand pairs but did not depend on KIR2DL1 signaling. To a lesser extent, proteins transferred independent from specific recognition. Intracellular domains of transferred proteins were not exposed to the extracellular environment and transferred proteins were removed by brief exposure to low pH. By fluorescence microscopy, transferred proteins localized to discrete regions on the recipient cell surface. Higher resolution scanning electron micrographs revealed that transferred proteins were located within specific membranous structures. Transmission electron microscopy of the immune synapse revealed that membrane protrusions from one cell interacted with the apposing cell surface within the synaptic cleft. These data, coupled with previous observations, lead us to propose that intercellular protein transfer is mediated by membrane protrusions within and surrounding the immunological synapse.


Subject(s)
Cell Membrane/metabolism , Cell Surface Extensions/metabolism , Intercellular Junctions/metabolism , Killer Cells, Natural/metabolism , Membrane Proteins/metabolism , Acids/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Cell Communication/immunology , Cell Line , Cell Line, Tumor , Cell Membrane/ultrastructure , Cell Surface Extensions/ultrastructure , Coated Pits, Cell-Membrane/metabolism , Coated Pits, Cell-Membrane/ultrastructure , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Humans , Intercellular Junctions/ultrastructure , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Microscopy, Electron , Organic Chemicals/metabolism , Protein Binding , Protein Transport/drug effects , Pyrimidines/pharmacology , Receptors, KIR2DL1/genetics , Receptors, KIR2DL1/immunology , Receptors, KIR2DL1/metabolism , Transfection , src-Family Kinases/antagonists & inhibitors
9.
Eur J Immunol ; 37(2): 516-27, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17236237

ABSTRACT

Murine natural killer (NK) cells are inhibited by target cell MHC class I molecules via Ly49 receptors. However, Ly49 receptors can be made inaccessible to target cell MHC class I by a cis interaction with its MHC class I ligand within the NK cell membrane. It has recently been demonstrated that MHC class I proteins transfer from the target cells to the NK cell. Here, we establish that the number of transferred MHC class I proteins is proportional to the number of Ly49A receptors at the NK cell surface. Ly49A+ NK cells from mice expressing the Ly49A ligand H-2D(d) showed a 90% reduction in Ly49A accessibility compared to Ly49A+ NK cells from H-2D(d)-negative mice. The reduction was caused both by lower expression of Ly49A and interactions in cis between Ly49A and H-2D(d) at the NK cell surface. Approximately 75% of the Ly49A receptors on H-2D(d)-expressing NK cells were occupied in cis with endogenous H-2D(d) and only 25% were free to interact with H-2D(d) molecules in trans. Thus, H-2D(d) ligands control Ly49A receptor accessibility through interactions both in cis and in trans.


Subject(s)
Antigens, Ly/chemistry , H-2 Antigens/chemistry , Killer Cells, Natural/immunology , Lectins, C-Type/chemistry , Animals , Antigens, Ly/immunology , Coculture Techniques , Flow Cytometry , H-2 Antigens/immunology , Histocompatibility Antigen H-2D , Hydrogen-Ion Concentration , Lectins, C-Type/immunology , Mice , Mice, Transgenic , Microscopy, Confocal , NK Cell Lectin-Like Receptor Subfamily A , Protein Binding/immunology , Receptors, NK Cell Lectin-Like
10.
Proc Natl Acad Sci U S A ; 101(48): 16873-8, 2004 Nov 30.
Article in English | MEDLINE | ID: mdl-15550544

ABSTRACT

Intercellular transfer of proteins across the immunological synapse is emerging as a common outcome of immune surveillance. We previously reported that target-cell MHC class I protein transfers onto natural killer (NK) cells expressing cognate killer Ig-like receptors (KIRs). We now show that, for both murine and human cells, target cells expressing inhibitory MHC class I ligands acquire cognate inhibitory NK receptors. Other cell-surface proteins, but not a cytoplasmic dye, also transferred from human NK cells to target cells across an inhibitory immunological synapse. The number of KIRs acquired from NK cells correlated with the level of expression of cognate MHC class I protein on target cells. Treatment with cytoskeletal inhibitors demonstrated that the target-cell cytoskeleton influences intercellular transfer of proteins in both directions. In contrast to constitutively expressed KIRs, a fraction of acquired KIRs could be removed by mild acid wash, demonstrating a difference between some of the acquired KIRs and constitutively expressed KIRs. An accumulation of phosphotyrosine at the location of the transferred KIRs implies a signaling capacity for NK cell proteins transferred to target cells. Thus, intercellular protein transfer between immune cells is bidirectional and could facilitate new aspects of immune cell communication.


Subject(s)
Killer Cells, Natural/immunology , Receptors, Immunologic/immunology , Animals , Cell Line, Transformed , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...