Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 296: 122076, 2023 05.
Article in English | MEDLINE | ID: mdl-36931102

ABSTRACT

The tumor microenvironment is a complex and dynamic ecosystem composed of various physical cues and biochemical signals that facilitate cancer progression, and tumor-associated macrophages are especially of interest as a treatable target due to their diverse pro-tumorigenic functions. Engineered three-dimensional models of tumors more effectively mimic the tumor microenvironment than monolayer cultures and can serve as a platform for investigating specific aspects of tumor biology within a controlled setting. To study the combinatorial effects of tumor-associated macrophages and microenvironment mechanical properties on osteosarcoma, we co-cultured human osteosarcoma cells with macrophages within biomaterials-based bone tumor niches with tunable stiffness. In the first 24 h of direct interaction between the two cell types, macrophages induced an inflammatory environment consisting of high concentrations of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 within moderately stiff scaffolds. Expression of Yes-associated protein (YAP), but not its homolog, transcriptional activator with PDZ-binding motif (TAZ), in osteosarcoma cells was significantly higher than in macrophages, and co-culture of the two cells slightly upregulated YAP in both cells, although not to a significant degree. Resistance to doxorubicin treatment in osteosarcoma cells was correlated with inflammation in the microenvironment, and signal transducer and activator of transcription 3 (STAT3) inhibition diminished the inflammation-related differences in drug resistance but ultimately did not improve the efficacy of doxorubicin. This work highlights that the biochemical cues conferred by tumor-associated macrophages in osteosarcoma are highly variable, and signals derived from the immune system should be considered in the development and testing of novel drugs for cancer.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Ecosystem , Osteosarcoma/pathology , Bone Neoplasms/pathology , Interleukin-6/metabolism , Doxorubicin/therapeutic use , Drug Resistance , Inflammation , Tumor Microenvironment
2.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1114-1123, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33135682

ABSTRACT

Nairoviruses are arthropod-borne viruses with a nearly global geographical distribution. Several are known causative agents of human disease, including Crimean-Congo hemorrhagic fever virus (CCHFV), which has a case fatality rate that can exceed 30%. Nairoviruses encode an ovarian tumour domain protease (OTU) that can suppress the innate immune response by reversing post-translational modifications by ubiquitin (Ub) and/or interferon-stimulated gene product 15 (ISG15). As a result, the OTU has been identified as a potential target for the development of CCHFV therapeutics. Despite sharing the same general fold, nairoviral OTUs show structural and enzymatic diversity. The CCHFV OTU, for example, possesses activity towards both Ub and ISG15, while the Hazara virus (HAZV) OTU interacts exclusively with Ub. Virology studies focused on the OTU have mostly been restricted to CCHFV, which requires BSL-4 containment facilities. Although HAZV has been proposed as a BSL-2 alternative, differences in the engagement of substrates by CCHFV and HAZV OTUs may present complicating factors when trying to model one using the other. To understand the molecular underpinnings of the differences in activity, a 2.78 Šresolution crystal structure of HAZV OTU bound to Ub was solved. Using structure-guided site-directed mutagenesis, HAZV OTUs were engineered with altered or eliminated deubiquitinase activity, including one with an exclusive activity for ISG15. Additionally, analysis of the structure yielded insights into the difference in inhibition observed between CCHFV and HAZV OTUs with a Ub-based inhibitor. These new insights present opportunities to utilize HAZV as a model system to better understand the role of the OTU in the context of infection.


Subject(s)
Nairovirus/enzymology , Peptide Hydrolases , Ubiquitin , Viral Proteins , Models, Molecular , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding , Protein Domains , Ubiquitin/chemistry , Ubiquitin/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
3.
PLoS One ; 14(12): e0226415, 2019.
Article in English | MEDLINE | ID: mdl-31869347

ABSTRACT

Tick-borne nairoviruses (order Bunyavirales) encode an ovarian tumor domain protease (OTU) that suppresses the innate immune response by reversing the post-translational modification of proteins by ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15). Ub is highly conserved across eukaryotes, whereas ISG15 is only present in vertebrates and shows substantial sequence diversity. Prior attempts to address the effect of ISG15 diversity on viral protein-ISG15 interactions have focused on only a single species' ISG15 or a limited selection of nairovirus OTUs. To gain a more complete perspective of OTU-ISG15 interactions, we biochemically assessed the relative activities of 14 diverse nairovirus OTUs for 12 species' ISG15 and found that ISG15 activity is predominantly restricted to particular nairovirus lineages reflecting, in general, known virus-host associations. To uncover the underlying molecular factors driving OTUs affinity for ISG15, X-ray crystal structures of Kupe virus and Ganjam virus OTUs bound to sheep ISG15 were solved and compared to complexes of Crimean-Congo hemorrhagic fever virus and Erve virus OTUs bound to human and mouse ISG15, respectively. Through mutational and structural analysis seven residues in ISG15 were identified that predominantly influence ISG15 species specificity among nairovirus OTUs. Additionally, OTU residues were identified that influence ISG15 preference, suggesting the potential for viral OTUs to adapt to different host ISG15s. These findings provide a foundation to further develop research methods to trace nairovirus-host relationships and delineate the full impact of ISG15 diversity on nairovirus infection.


Subject(s)
Cytokines/metabolism , Host Specificity/genetics , Nairovirus/enzymology , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Protein Interaction Domains and Motifs/genetics , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Crystallography, X-Ray , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Mice , Models, Molecular , Nairovirus/classification , Nairovirus/genetics , Peptide Hydrolases/chemistry , Phylogeny , Protein Binding/genetics , Sequence Homology , Sheep , Species Specificity , Ubiquitin/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL