Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 6444, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085200

ABSTRACT

The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called "quasiparticle poisoning". Both superconducting qubits and low threshold dark matter calorimeters have observed excess bursts of quasiparticles or phonons that decrease in rate with time. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events.

2.
Elife ; 122024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536959

ABSTRACT

The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.


Subject(s)
Purkinje Cells , Stem Cell Factor , Mice , Animals , Purkinje Cells/physiology , Stem Cell Factor/metabolism , Cerebellum/physiology , Cerebellar Cortex/metabolism , Interneurons/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Mammals/metabolism
3.
BioTech (Basel) ; 13(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38247731

ABSTRACT

Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, ß-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost-benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.

4.
J Invest Dermatol ; 144(1): 84-95.e3, 2024 01.
Article in English | MEDLINE | ID: mdl-37544587

ABSTRACT

Absorption of dietary iron is largely regulated by the liver hormone hepcidin, which is released under conditions of iron overload and inflammation. Although hepcidin-dependent regulation of iron uptake and circulation is well-characterized, recent studies have suggested that the skin may play an important role in iron homeostasis, including transferrin receptor-mediated epidermal iron uptake and direct hepcidin production by keratinocytes. In this study, we characterized direct keratinocyte responses to conditions of high and low iron. We observed potent iron storage capacity by keratinocytes in vitro and in vivo and the effects of iron on epidermal differentiation and gene expression associated with inflammation and barrier function. In mice, systemic iron was observed to be coupled to epidermal iron content. Furthermore, topical inflammation, as opposed to systemic inflammation, resulted in a primary iron-deficiency phenotype associated with low liver hepcidin. These studies suggest a role for keratinocytes and epidermal iron storage as regulators of iron homeostasis with direct contribution by the cutaneous inflammatory state.


Subject(s)
Ferritins , Hepcidins , Animals , Mice , Ferritins/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Homeostasis , Inflammation
5.
Cell Rep ; 42(9): 113024, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37610872

ABSTRACT

Staphylococcus epidermidis is a common microbe on human skin and has beneficial functions in the skin microbiome. However, under conditions of allergic inflammation, the abundance of S. epidermidis increases, establishing potential danger to the epidermis. To understand how this commensal may injure the host, we investigate phenol-soluble modulin (PSM) peptides produced by S. epidermidis that are similar to peptides produced by Staphylococcus aureus. Synthetic S. epidermidis PSMs induce expression of host defense genes and are cytotoxic to human keratinocytes. Deletion mutants of S. epidermidis lacking these gene products support these observations and further show that PSMs require the action of the EcpA bacterial protease to induce inflammation when applied on mouse skin with an intact stratum corneum. The expression of PSMδ from S. epidermidis is also found to correlate with disease severity in patients with atopic dermatitis. These observations show how S. epidermidis PSMs can promote skin inflammation.


Subject(s)
Dermatitis , Staphylococcal Infections , Animals , Mice , Humans , Cytokines/metabolism , Staphylococcus epidermidis , Keratinocytes/metabolism , Inflammation , Staphylococcal Infections/microbiology , Peptides/metabolism
6.
Development ; 150(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37254876

ABSTRACT

RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.


Subject(s)
Signal Transduction , Somatostatin , Alleles , Somatostatin/genetics , Somatostatin/metabolism , Signal Transduction/genetics , MAP Kinase Signaling System/genetics , Interneurons/metabolism , GABAergic Neurons/metabolism
7.
PNAS Nexus ; 2(4): pgad062, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020498

ABSTRACT

Gene regulation plays essential roles in all multicellular organisms, allowing for different specialized tissue types to be generated from a complex genome. Heterochromatin-driven gene repression, associated with a physical compaction of the genome, is a pathway involving core components that are conserved from yeast to human. Posttranslational modification of chromatin is a critical component of gene regulation. Specifically, tri-methylation of the nucleosome component histone 3 at lysine 9 (H3K9me3) is a key feature of this pathway along with the hallmark heterochromatin protein 1 (HP1). Histone methyltransferases are recruited by HP1 to deposit H3K9me3 marks which nucleate and recruit more HP1 in a process that spreads from the targeting site to signal for gene repression. One of the enzymes recruited is SETDB1, a methyltransferase which putatively catalyzes posttranslational methylation marks on H3K9. To better understand the contribution of SETDB1 in heterochromatin formation, we downregulated SETDB1 through knockdown by a dCas9-KRAB system and examined heterochromatin formation in a chromatin in vivo assay (CiA-Oct4). We studied the contribution of SETDB1 to heterochromatin formation kinetics in a developmentally crucial locus, Oct4. Our data demonstrate that SETDB1 reduction led to a delay in both gene silencing and in H3K9me3 accumulation. Importantly, SETDB1 knockdown to a ∼50% level did not stop heterochromatin formation completely. Particle-based Monte Carlo simulations in 3D space with explicit representation of key molecular processes enabled the elucidation of how SETDB1 downregulation affects the individual molecular processes underlying heterochromatin formation.

8.
iScience ; 25(7): 104590, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800764

ABSTRACT

Heterochromatin is a physical state of the chromatin fiber that maintains gene repression during cell development. Although evidence exists on molecular mechanisms involved in heterochromatin formation, a detailed structural mechanism of heterochromatin formation needs a better understanding. We made use of a simple Monte Carlo simulation model with explicit representation of key molecular events to observe molecular self-organization leading to heterochromatin formation. Our simulations provide a structural interpretation of several important traits of the heterochromatinization process. In particular, this study provides a depiction of how small amounts of HP1 are able to induce a highly condensed chromatin state through HP1 dimerization and bridging of sequence-remote nucleosomes. It also elucidates structural roots of a yet poorly understood phenomenon of a nondeterministic nature of heterochromatin formation and subsequent gene repression. Experimental chromatin in vivo assay provides an unbiased estimate of time scale of repressive response to a heterochromatin-triggering event.

9.
mBio ; 13(3): e0093022, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35608301

ABSTRACT

Staphylococcus hominis is frequently isolated from human skin, and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique autoinducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned medium by mass spectrometry and then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage. IMPORTANCE Human skin is home to a variety of commensal bacteria, including many species of coagulase-negative staphylococci (CoNS). While it is well established that the microbiota as a whole maintains skin homeostasis and excludes pathogens (i.e., colonization resistance), relatively little is known about the unique contributions of individual CoNS species to these interactions. Staphylococcus hominis is the second most frequently isolated CoNS from healthy skin, and there is emerging evidence to suggest that it may play an important role in excluding pathogens, including Staphylococcus aureus, from colonizing or infecting the skin. Here, we identified that S. hominis makes 6 unique peptide inhibitors of the S. aureus global virulence factor regulation system (agr). Additionally, we found that one of these peptides can prevent topical or necrotic S. aureus skin injury in a mouse model. Our results demonstrate a specific and broadly protective role for this ubiquitous, yet underappreciated skin commensal.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Bacterial Proteins/genetics , Humans , Mice , Peptides , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus , Staphylococcus aureus/genetics , Staphylococcus epidermidis/physiology , Staphylococcus hominis , Virulence Factors
10.
Nucleic Acids Res ; 50(8): 4355-4371, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35390161

ABSTRACT

A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.


Subject(s)
Histones , Nucleosomes , Chromatin/genetics , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , Histones/genetics , Histones/metabolism , Intracellular Signaling Peptides and Proteins , Phosphorylation , Protein Serine-Threonine Kinases , Threonine/metabolism
11.
J Neurophysiol ; 127(3): 607-622, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35080448

ABSTRACT

GNAO1 encodes Gαo, a heterotrimeric G protein α subunit in the Gi/o family. In this report, we used a Gnao1 mouse model "G203R" previously described as a "gain-of-function" Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein, and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared with WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin) enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. Although GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is an electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.NEW & NOTEWORTHY This report reveals the electrophysiological mechanisms of a movement disorder animal model with monoallelic Gnao1 loss. This study illustrates the role of Gαo protein in regulating GABA release in mouse cerebellum. This study could also facilitate the discovery of new drugs or drug repurposing for GNAO1-associated disorders. Moreover, since GNAO1 shares pathways with other genes related to movement disorders, developing drugs for the treatment of GNAO1-associated movement disorders could further the pharmacological intervention for other monogenic movement disorders.


Subject(s)
Movement Disorders , Purkinje Cells , Animals , Cerebellum/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Mice , Purkinje Cells/physiology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
13.
J Allergy Clin Immunol ; 147(3): 955-966.e16, 2021 03.
Article in English | MEDLINE | ID: mdl-32634452

ABSTRACT

BACKGROUND: Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism. OBJECTIVE: In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier. METHODS: The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA. RESULTS: S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis. CONCLUSION: S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.


Subject(s)
Bacterial Proteins/metabolism , Cysteine Proteases/metabolism , Dermatitis, Atopic/microbiology , Microbiota , Skin/microbiology , Staphylococcal Skin Infections/microbiology , Staphylococcus epidermidis/enzymology , Animals , Antimicrobial Cationic Peptides/metabolism , Cells, Cultured , DNA, Bacterial/genetics , Dermatitis, Atopic/pathology , Desmoglein 1/metabolism , Humans , Keratinocytes/microbiology , Keratinocytes/pathology , Mice , Mice, Inbred C57BL , Severity of Illness Index , Skin/pathology , Staphylococcal Skin Infections/pathology , Cathelicidins
14.
Sci Rep ; 10(1): 21237, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277548

ABSTRACT

Biofilm formation by bacterial pathogens is associated with numerous human diseases and can confer resistance to both antibiotics and host defenses. Many strains of Staphylococcus epidermidis are capable of forming biofilms and are important human pathogens. Since S. epidermidis coexists with abundant Cutibacteria acnes on healthy human skin and does not typically form a biofilm in this environment, we hypothesized that C. acnes may influence biofilm formation of S. epidermidis. Culture supernatants from C. acnes and other species of Cutibacteria inhibited S. epidermidis but did not inhibit biofilms by Pseudomonas aeruginosa or Bacillus subtilis, and inhibited biofilms by S. aureus to a lesser extent. Biofilm inhibitory activity exhibited chemical properties of short chain fatty acids known to be produced from C. acnes. The addition of the pure short chain fatty acids propionic, isobutyric or isovaleric acid to S. epidermidis inhibited biofilm formation and, similarly to C. acnes supernatant, reduced polysaccharide synthesis by S. epidermidis. Both short chain fatty acids and C. acnes culture supernatant also increased sensitivity of S. epidermidis to antibiotic killing under biofilm-forming conditions. These observations suggest the presence of C. acnes in a diverse microbial community with S. epidermidis can be beneficial to the host and demonstrates that short chain fatty acids may be useful to limit formation of a biofilm by S. epidermidis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Fatty Acids, Volatile/pharmacology , Propionibacteriaceae/metabolism , Staphylococcus epidermidis/drug effects , Bacillus subtilis/drug effects , Bacillus subtilis/physiology , Culture Media, Conditioned/analysis , Culture Media, Conditioned/pharmacology , Drug Synergism , Hemiterpenes/pharmacology , Isobutyrates/pharmacology , Pentanoic Acids/pharmacology , Polysaccharides/biosynthesis , Propionates/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/metabolism , Staphylococcus epidermidis/physiology
15.
Cell Rep ; 30(9): 2923-2933.e7, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130897

ABSTRACT

Netherton syndrome (NS) is a monogenic skin disease resulting from loss of function of lymphoepithelial Kazal-type-related protease inhibitor (LEKTI-1). In this study we examine if bacteria residing on the skin are influenced by the loss of LEKTI-1 and if interaction between this human gene and resident bacteria contributes to skin disease. Shotgun sequencing of the skin microbiome demonstrates that lesional skin of NS subjects is dominated by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Isolates of either species from NS subjects are able to induce skin inflammation and barrier damage on mice. These microbes promote skin inflammation in the setting of LEKTI-1 deficiency due to excess proteolytic activity promoted by S. aureus phenol-soluble modulin α as well as increased bacterial proteases staphopain A and B from S. aureus or EcpA from S. epidermidis. These findings demonstrate the critical need for maintaining homeostasis of host and microbial proteases to prevent a human skin disease.


Subject(s)
Netherton Syndrome/microbiology , Netherton Syndrome/pathology , Peptide Hydrolases/metabolism , Skin/microbiology , Skin/pathology , Staphylococcus aureus/enzymology , Staphylococcus epidermidis/enzymology , Adolescent , Adult , Animals , Bacterial Toxins/metabolism , Child , Colony Count, Microbial , Epidermis , Female , Humans , Male , Mice, Inbred C57BL , Microbiota , Middle Aged , Netherton Syndrome/enzymology , Phenols , Solubility
16.
J Invest Dermatol ; 140(8): 1619-1628.e2, 2020 08.
Article in English | MEDLINE | ID: mdl-31981578

ABSTRACT

The microbiome represents a vast resource for drug discovery, as its members engage in constant conflict to outcompete one another by deploying diverse strategies for survival. Cutibacterium acnes is one of the most common bacterial species on human skin and can promote the common disease acne vulgaris. By employing a combined strategy of functional screening, genetics, and proteomics we discovered a strain of Staphylococcus capitis (S. capitis E12) that selectively inhibited growth of C. acnes with potency greater than antibiotics commonly used in the treatment of acne. Antimicrobial peptides secreted from S. capitis E12 were identified as four distinct phenol-soluble modulins acting synergistically. These peptides were not toxic to human keratinocytes and the S. capitis extract did not kill other commensal skin bacteria but was effective against C. acnes on pig skin and on mice. Overall, these data show how a member of the human skin microbiome can be useful as a biotherapy for acne vulgaris.


Subject(s)
Acne Vulgaris/therapy , Biological Therapy/methods , Skin/microbiology , Staphylococcus capitis/immunology , Symbiosis/immunology , Acne Vulgaris/immunology , Acne Vulgaris/microbiology , Adult , Animals , Female , Humans , Keratinocytes/immunology , Male , Mice , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/isolation & purification , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/toxicity , Primary Cell Culture , Propionibacterium acnes/immunology , Propionibacterium acnes/pathogenicity , Skin/immunology , Staphylococcus capitis/isolation & purification , Staphylococcus capitis/metabolism , Swine , Toxicity Tests , Young Adult
17.
ACS Omega ; 4(4): 6492-6501, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31342001

ABSTRACT

This article reports a coupled computational experimental approach to design small molecules aimed at targeting genetic cardiomyopathies. We begin with a fully atomistic model of the cardiac thin filament. To this we dock molecules using accepted computational drug binding methodologies. The candidates are screened for their ability to repair alterations in biophysical properties caused by mutation. Hypertrophic and dilated cardiomyopathies caused by mutation are initially biophysical in nature, and the approach we take is to correct the biophysical insult prior to irreversible cardiac damage. Candidate molecules are then tested experimentally for both binding and biophysical properties. This is a proof of concept study-eventually candidate molecules will be tested in transgenic animal models of genetic (sarcomeric) cardiomyopathies.

18.
Sci Transl Med ; 11(490)2019 05 01.
Article in English | MEDLINE | ID: mdl-31043573

ABSTRACT

Colonization of the skin by Staphylococcus aureus is associated with exacerbation of atopic dermatitis (AD), but any direct mechanism through which dysbiosis of the skin microbiome may influence the development of AD is unknown. Here, we show that proteases and phenol-soluble modulin α (PSMα) secreted by S. aureus lead to endogenous epidermal proteolysis and skin barrier damage that promoted inflammation in mice. We further show that clinical isolates of different coagulase-negative staphylococci (CoNS) species residing on normal skin produced autoinducing peptides that inhibited the S. aureus agr system, in turn decreasing PSMα expression. These autoinducing peptides from skin microbiome CoNS species potently suppressed PSMα expression in S. aureus isolates from subjects with AD without inhibiting S. aureus growth. Metagenomic analysis of the AD skin microbiome revealed that the increase in the relative abundance of S. aureus in patients with active AD correlated with a lower CoNS autoinducing peptides to S. aureus ratio, thus overcoming the peptides' capacity to inhibit the S. aureus agr system. Characterization of a S. hominis clinical isolate identified an autoinducing peptide (SYNVCGGYF) as a highly potent inhibitor of S. aureus agr activity, capable of preventing S. aureus-mediated epithelial damage and inflammation on murine skin. Together, these findings show how members of the normal human skin microbiome can contribute to epithelial barrier homeostasis by using quorum sensing to inhibit S. aureus toxin production.


Subject(s)
Bacteria/metabolism , Dermatitis, Atopic/microbiology , Epidermis/injuries , Epidermis/microbiology , Quorum Sensing , Animals , Bacterial Toxins , Coagulase/metabolism , Homeostasis , Humans , Inflammation/pathology , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Peptide Hydrolases/metabolism , Peptides/isolation & purification , Peptides/metabolism , Staphylococcus/physiology
20.
J Phys Chem Lett ; 9(12): 3301-3306, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29863359

ABSTRACT

The three-state model of tropomyosin (Tm) positioning along filamentous actin allows for Tm to act as a gate for myosin head binding with actin. The blocked state of Tm prevents myosin binding, while the open state allows for strong binding. Intermediate to this transition is the closed state. The details of the transition from the blocked to the closed state and then finally to the open state by Tm have not been fully accessible to experiment. Utilizing steered molecular dynamics, we investigate the work required to move the Tm strand through the extant set of proposed transitions. We find that an azimuthal motion around the actin filament by Tm is most probable in spite of increased initial energy barrier from the topographical landscape of actin.

SELECTION OF CITATIONS
SEARCH DETAIL