Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appetite ; 191: 107077, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37813162

ABSTRACT

Little is known about how chronic sugar consumption impacts avidity for and daily intake of sugars. This issue is topical because modern humans exhibit high daily intakes of sugar. Here, we exposed sugar-naïve C57BL/6 mice (across two 28-day exposure periods, EP1 and EP2) to a control (chow and water) or experimental (chow, water and a 11 or 34% sugar solution) diet. The sugar solutions contained sucrose, glucose syrups, or high-fructose syrups. We used brief-access tests to measure appetitive responses to sucralose and sucrose solutions at three time points: baseline (before EP1), after EP1, and after EP2. We used lick rates to infer palatability, and number of trials initiated/test to infer motivation. Exposure to the control diet had no impact on lick rates or number of trials initiated for sucralose and sucrose. In contrast, exposure to the experimental diets reduced licking for the sweeteners to varying degrees. Lick rates were reduced by exposure to sugar solutions containing the 11% glucose syrups, 34% sucrose, 34% glucose syrups and 34% high-fructose syrups. The number of trials initiated was reduced by exposure to all of the sugar solutions. Despite the exposure-induced reductions in avidity for the sweetener solutions, daily intakes of virtually all of the sugar solutions increased across the exposure periods. We conclude that (i) chronic consumption of sugar solutions reduced avidity for the sweetened solutions, (ii) the extent of this effect depended on the concentration and type of sugar, and (iii) avidity for sweet-tasting solutions could not explain the persistently high daily intake of sugar solutions in mice.

2.
Physiol Behav ; 267: 114221, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37146897

ABSTRACT

Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 mice were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.


Subject(s)
Fructose , Sugars , Humans , Mice , Female , Animals , Male , Sugars/pharmacology , Mice, Inbred C57BL , Fructose/pharmacology , Carbohydrates/pharmacology , Sucrose/pharmacology , Mice, Inbred Strains , Food Preferences , Taste
3.
Physiol Behav ; 256: 113954, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36055416

ABSTRACT

There is debate about the metabolic impact of sugar-sweetened beverages. Here, we tested the hypothesis that ad lib consumption of glucose (Gluc) or high-fructose (HiFruc) syrups improves glucose tolerance in mice. We provided C57BL/6 mice with a control (chow and water) or experimental (chow, water and sugar solution) diet across two consecutive 28-day exposure periods, and monitored changes in body composition, glucose tolerance, cephalic-phase insulin release (CPIR) and insulin sensitivity. The sugar solutions contained 11% concentrations of Gluc or HiFruc syrup; these syrups were derived from either corn starch or cellulose. In Experiment 1, consumption of the Gluc diets reliably enhanced glucose tolerance, while consumption of the HiFruc diets did not. Mice on the Gluc diets exhibited higher CPIR (relative to baseline) by the end of exposure period 1, whereas mice on the control and HiFruc diets did not do so until the end of exposure period 2. Mice on the Gluc diets also exhibited higher insulin sensitivity than control mice at the end of exposure period 2, while mice on the HiFruc diets did not. In Experiment 2, we repeated the previous experiment, but limited testing to the corn-based Gluc and HiFruc syrups. We found, once again, that consumption of the Gluc (but not the HiFruc) diet enhanced glucose tolerance, in part by increasing CPIR and insulin sensitivity. These results show that mice can adapt metabolically to high glucose diets, and that this adaptation process involves upregulating at least two components of the insulin response system.


Subject(s)
Glucose , Insulin Resistance , Animals , Blood Glucose/metabolism , Carbohydrates , Cellulose , Fructose/pharmacology , Glucose/metabolism , Insulin/metabolism , Mice , Mice, Inbred C57BL , Starch , Sweetening Agents , Water
4.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R70-R80, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31693385

ABSTRACT

There are widespread concerns that low-calorie sweeteners (LCSs) cause metabolic derangement. These concerns stem in part from prior studies linking LCS consumption to impaired glucose tolerance in humans and rodents. Here, we examined this linkage in mice. In experiment 1, we provided mice with chow, water, and an LCS-sweetened solution (saccharin, sucralose, or acesulfame K) for 28 days and measured glucose tolerance and body weight across the exposure period. Exposure to the LCS solutions did not impair glucose tolerance or alter weight gain. In experiment 2, we provided mice with chow, water, and a solution containing saccharin, glucose, or a mixture of both for 28 days, and tested for metabolic changes. Exposure to the saccharin solution increased the insulinemic response of mice to the glucose challenge, and exposure to the saccharin + glucose solution increased the rate of glucose uptake during the glucose challenge. However, neither of these test solutions altered glucose tolerance, insulin sensitivity, plasma triglycerides, or percent body fat. In contrast, exposure to the glucose solution increased glucose tolerance, early insulin response, insulin sensitivity, and percent body fat. We conclude that whereas the LCS-containing solutions induced a few metabolic changes, they were modest compared with those induced by the glucose solution.


Subject(s)
Energy Metabolism/drug effects , Sweetening Agents/pharmacology , Animals , Body Weight , Energy Intake , Female , Glucose Tolerance Test , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL