Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(6): e0303894, 2024.
Article in English | MEDLINE | ID: mdl-38941338

ABSTRACT

OBJECTIVE: This study began as a single-blind randomized controlled trial (RCT) to investigate the efficacy and safety of electroconvulsive therapy (ECT) for severe treatment-refractory agitation in advanced dementia. The aims are to assess agitation reduction using the Cohen-Mansfield Agitation Inventory (CMAI), evaluate tolerability and safety outcomes, and explore the long-term stability of agitation reduction and global functioning. Due to challenges encountered during implementation, including recruitment obstacles and operational difficulties, the study design was modified to an open-label format and other protocol amendments were implemented. METHODS: Initially, the RCT randomized participants 1:1 to either ECT plus usual care or simulated ECT plus usual care (S-ECT) groups. As patients were enrolled, data were collected from both ECT and simulated ECT (S-ECT) patients. The study now continues in an open-label study design where all patients receive actual ECT, reducing the targeted sample size from 200 to 50 participants. RESULTS: Study is ongoing and open to enrollment. CONCLUSION: The transition of the ECT-AD study design from an RCT to open-label design exemplifies adaptive research methodologies in response to real-world challenges. Data from both the RCT and open-label phases of the study will provide a unique perspective on the role of ECT in managing severe treatment-refractory agitation in dementia, potentially influencing future clinical practices and research approaches.


Subject(s)
Dementia , Electroconvulsive Therapy , Psychomotor Agitation , Humans , Electroconvulsive Therapy/methods , Psychomotor Agitation/therapy , Dementia/therapy , Dementia/complications , Single-Blind Method , Female , Male , Treatment Outcome , Aged , Aberrant Motor Behavior in Dementia
2.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496682

ABSTRACT

Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in both normal and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the largest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in terms of identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables to identify protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.

3.
bioRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38405958

ABSTRACT

BACKGROUND: The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. RESULTS: Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. CONCLUSIONS: We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Where of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) where discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.

4.
ACS Meas Sci Au ; 3(6): 459-468, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38145026

ABSTRACT

Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 µm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 µm from a 10 µm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 µm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.

5.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993277

ABSTRACT

There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity at a cell-type-specific level to better understand and predict the function of complex biological systems, such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverages due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (Microdroplet Processing in One pot for Trace Samples), the multiplexed isobaric labelling, and a nanoflow peptide fractionation approach. The integrated workflow allowed to maximize proteome coverage of laser-isolated tissue samples containing nanogram proteins. We demonstrated the deep spatial proteomics can quantify more than 5,000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and reveal unique islet microenvironments.

6.
Anal Chem ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36637389

ABSTRACT

There is a growing demand to develop high-throughput and high-sensitivity mass spectrometry methods for single-cell proteomics. The commonly used isobaric labeling-based multiplexed single-cell proteomics approach suffers from distorted protein quantification due to co-isolated interfering ions during MS/MS fragmentation, also known as ratio compression. We reasoned that the use of MS3-based quantification could mitigate ratio compression and provide better quantification. However, previous studies indicated reduced proteome coverages in the MS3 method, likely due to long duty cycle time and ion losses during multilevel ion selection and fragmentation. Herein, we described an improved MS acquisition method for MS3-based single-cell proteomics by employing a linear ion trap to measure reporter ions. We demonstrated that linear ion trap can increase the proteome coverages for single-cell-level peptides with even higher gain obtained via the MS3 method. The optimized real-time search MS3 method was further applied to study the immune activation of single macrophages. Among a total of 126 single cells studied, over 1200 and 1000 proteins were quantifiable when at least 50 and 75% nonmissing data were required, respectively. Our evaluation also revealed several limitations of the low-resolution ion trap detector for multiplexed single-cell proteomics and suggested experimental solutions to minimize their impacts on single-cell analysis.

7.
Mol Cell Proteomics ; 22(2): 100491, 2023 02.
Article in English | MEDLINE | ID: mdl-36603806

ABSTRACT

Conventional proteomic approaches measure the averaged signal from mixed cell populations or bulk tissues, leading to the dilution of signals arising from subpopulations of cells that might serve as important biomarkers. Recent developments in bottom-up proteomics have enabled spatial mapping of cellular heterogeneity in tissue microenvironments. However, bottom-up proteomics cannot unambiguously define and quantify proteoforms, which are intact (i.e., functional) forms of proteins capturing genetic variations, alternatively spliced transcripts and posttranslational modifications. Herein, we described a spatially resolved top-down proteomics (TDP) platform for proteoform identification and quantitation directly from tissue sections. The spatial TDP platform consisted of a nanodroplet processing in one pot for trace samples-based sample preparation system and an laser capture microdissection-based cell isolation system. We improved the nanodroplet processing in one pot for trace samples sample preparation by adding benzonase in the extraction buffer to enhance the coverage of nucleus proteins. Using ∼200 cultured cells as test samples, this approach increased total proteoform identifications from 493 to 700; with newly identified proteoforms primarily corresponding to nuclear proteins. To demonstrate the spatial TDP platform in tissue samples, we analyzed laser capture microdissection-isolated tissue voxels from rat brain cortex and hypothalamus regions. We quantified 509 proteoforms within the union of top-down mass spectrometry-based proteoform identification and characterization and TDPortal identifications to match with features from protein mass extractor. Several proteoforms corresponding to the same gene exhibited mixed abundance profiles between two tissue regions, suggesting potential posttranslational modification-specific spatial distributions. The spatial TDP workflow has prospects for biomarker discovery at proteoform level from small tissue sections.


Subject(s)
Proteome , Proteomics , Proteome/metabolism , Microfluidics , Mass Spectrometry , DNA-Binding Proteins
8.
Commun Biol ; 6(1): 70, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653408

ABSTRACT

Effective phosphoproteome of nanoscale sample analysis remains a daunting task, primarily due to significant sample loss associated with non-specific surface adsorption during enrichment of low stoichiometric phosphopeptide. We develop a tandem tip phosphoproteomics sample preparation method that is capable of sample cleanup and enrichment without additional sample transfer, and its integration with our recently developed SOP (Surfactant-assisted One-Pot sample preparation) and iBASIL (improved Boosting to Amplify Signal with Isobaric Labeling) approaches provides a streamlined workflow enabling sensitive, high-throughput nanoscale phosphoproteome measurements. This approach significantly reduces both sample loss and processing time, allowing the identification of >3000 (>9500) phosphopeptides from 1 (10) µg of cell lysate using the label-free method without a spectral library. It also enables precise quantification of ~600 phosphopeptides from 100 sorted cells (single-cell level input for the enriched phosphopeptides) and ~700 phosphopeptides from human spleen tissue voxels with a spatial resolution of 200 µm (equivalent to ~100 cells) in a high-throughput manner. The new workflow opens avenues for phosphoproteome profiling of mass-limited samples at the low nanogram level.


Subject(s)
Phosphopeptides , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Workflow , Phosphopeptides/analysis , Proteomics/methods , Proteome
9.
J Proteome Res ; 22(2): 508-513, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36414245

ABSTRACT

Modern mass spectrometry-based workflows employing hybrid instrumentation and orthogonal separations collect multidimensional data, potentially allowing deeper understanding in omics studies through adoption of artificial intelligence methods. However, the large volume of these rich spectra challenges existing data storage and access technologies, therefore precluding informatics advancements. We present MZA (pronounced m-za), the mass-to-charge (m/z) generic data storage and access tool designed to facilitate software development and artificial intelligence research in multidimensional mass spectrometry measurements. Composed of a data conversion tool and a simple file structure based on the HDF5 format, MZA provides easy, cross-platform and cross-programming language access to raw MS-data, enabling fast development of new tools in data science programming languages such as Python and R. The software executable, example MS-data and example Python and R scripts are freely available at https://github.com/PNNL-m-q/mza.


Subject(s)
Artificial Intelligence , Software , Mass Spectrometry/methods , Programming Languages , Information Storage and Retrieval
10.
Front Mol Biosci ; 9: 1022775, 2022.
Article in English | MEDLINE | ID: mdl-36465564

ABSTRACT

Human disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements. Mass spectrometry imaging methods were optimized to boost the number of annotatable molecules in agarose inflated lung samples. This optimized protocol permitted the observation of unique lipid distributions within several airway regions in the lung tissue block. Laser capture microdissection of these airway regions followed by high-resolution proteomic analysis allowed us to begin linking the lipidome with the proteome in a spatially resolved manner, where we observed proteins with high abundance specifically localized to the airway regions. We also compared our mass spectrometry results to lung tissue samples preserved using two other inflation/embedding media, but we identified several pitfalls with the sample preparation steps using this preservation method. Overall, we demonstrated the versatility of the inflation method, and we can start to reveal how the metabolome, lipidome, and proteome are connected spatially in human lungs and across disease states through a variety of different experiments.

11.
Mol Cell Proteomics ; 21(12): 100426, 2022 12.
Article in English | MEDLINE | ID: mdl-36244662

ABSTRACT

Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug-target interactions using existing protein/drug binding databases.


Subject(s)
Islets of Langerhans , Islets of Langerhans/metabolism , Proteomics/methods , Proteins/metabolism , Laser Capture Microdissection
12.
Development ; 149(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36093878

ABSTRACT

The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.


Subject(s)
Gene Expression Regulation, Developmental , Mesoderm , Animals , Cell Lineage , Chick Embryo , Forelimb , Limb Buds
13.
Cell Syst ; 13(5): 426-434.e4, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35298923

ABSTRACT

Single-cell proteomics (scProteomics) promises to advance our understanding of cell functions within complex biological systems. However, a major challenge of current methods is their inability to identify and provide accurate quantitative information for low-abundance proteins. Herein, we describe an ion-mobility-enhanced mass spectrometry acquisition and peptide identification method, transferring identification based on FAIMS filtering (TIFF), to improve the sensitivity and accuracy of label-free scProteomics. TIFF extends the ion accumulation times for peptide ions by filtering out singly charged ions. The peptide identities are assigned by a three-dimensional MS1 feature matching approach (retention time, accurate mass, and FAIMS compensation voltage). The TIFF method enabled unbiased proteome analysis to a depth of >1,700 proteins in single HeLa cells, with >1,100 proteins consistently identified. As a demonstration, we applied the TIFF method to obtain temporal proteome profiles of >150 single murine macrophage cells during lipopolysaccharide stimulation and identified time-dependent proteome changes. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Proteome , Proteomics , Animals , Chromatography, Liquid/methods , HeLa Cells , Humans , Ions , Mice , Peptides/chemistry , Proteome/analysis , Proteomics/methods
15.
Nat Commun ; 12(1): 6246, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716329

ABSTRACT

Global quantification of protein abundances in single cells could provide direct information on cellular phenotypes and complement transcriptomics measurements. However, single-cell proteomics is still immature and confronts many technical challenges. Herein we describe a nested nanoPOTS (N2) chip to improve protein recovery, operation robustness, and processing throughput for isobaric-labeling-based scProteomics workflow. The N2 chip reduces reaction volume to <30 nL and increases capacity to >240 single cells on a single microchip. The tandem mass tag (TMT) pooling step is simplified by adding a microliter droplet on the nested nanowells to combine labeled single-cell samples. In the analysis of ~100 individual cells from three different cell lines, we demonstrate that the N2 chip-based scProteomics platform can robustly quantify ~1500 proteins and reveal membrane protein markers. Our analyses also reveal low protein abundance variations, suggesting the single-cell proteome profiles are highly stable for the cells cultured under identical conditions.


Subject(s)
Proteomics/instrumentation , Proteomics/methods , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Animals , Biomarkers/analysis , Cell Line , Equipment Design , Lab-On-A-Chip Devices , Mice , Nanostructures/chemistry , Proteins/analysis , RAW 264.7 Cells , Reproducibility of Results , Sequence Analysis, RNA , Specimen Handling/instrumentation , Specimen Handling/methods , Tandem Mass Spectrometry/methods , Workflow
16.
J Proteome Res ; 20(5): 2195-2205, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33491460

ABSTRACT

Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, microdroplet processing in one pot for trace samples (microPOTS), was employed to identify proteomic changes in ∼200 Barrett's esophageal cells following physiologic and radiation stress exposure. From this small population of cells, microPOTS confidently identified >1500 protein groups, and achieved a high reproducibility with a Pearson's correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A Barrett's cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify differentially expressed proteins from limited numbers of cells.


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , Barrett Esophagus/genetics , Cell Line , Heterogeneous-Nuclear Ribonucleoprotein Group C , Humans , Mucoproteins , Oncogene Proteins , Proteomics , Reproducibility of Results , Tacrolimus Binding Proteins , Ubiquitin-Conjugating Enzymes
17.
Anal Chem ; 92(15): 10588-10596, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32639140

ABSTRACT

Single-cell proteomics can provide critical biological insight into the cellular heterogeneity that is masked by bulk-scale analysis. We have developed a nanoPOTS (nanodroplet processing in one pot for trace samples) platform and demonstrated its broad applicability for single-cell proteomics. However, because of nanoliter-scale sample volumes, the nanoPOTS platform is not compatible with automated LC-MS systems, which significantly limits sample throughput and robustness. To address this challenge, we have developed a nanoPOTS autosampler allowing fully automated sample injection from nanowells to LC-MS systems. We also developed a sample drying, extraction, and loading workflow to enable reproducible and reliable sample injection. The sequential analysis of 20 samples containing 10 ng tryptic peptides demonstrated high reproducibility with correlation coefficients of >0.995 between any two samples. The nanoPOTS autosampler can provide analysis throughput of 9.6, 16, and 24 single cells per day using 120, 60, and 30 min LC gradients, respectively. As a demonstration for single-cell proteomics, the autosampler was first applied to profiling protein expression in single MCF10A cells using a label-free approach. At a throughput of 24 single cells per day, an average of 256 proteins was identified from each cell and the number was increased to 731 when the Match Between Runs algorithm of MaxQuant was used. Using a multiplexed isobaric labeling approach (TMT-11plex), ∼77 single cells could be analyzed per day. We analyzed 152 cells from three acute myeloid leukemia cell lines, resulting in a total of 2558 identified proteins with 1465 proteins quantifiable (70% valid values) across the 152 cells. These data showed quantitative single-cell proteomics can cluster cells to distinct groups and reveal functionally distinct differences.


Subject(s)
Analytic Sample Preparation Methods/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Nanotechnology/methods , Proteomics/methods , Single-Cell Analysis/methods , Automation , Cell Line, Tumor , Humans
18.
Anal Chem ; 92(10): 7087-7095, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32374172

ABSTRACT

Top-down proteomics is a powerful tool for characterizing genetic variations and post-translational modifications at intact protein level. However, one significant technical gap of top-down proteomics is the inability to analyze a low amount of biological samples, which limits its access to isolated rare cells, fine needle aspiration biopsies, and tissue substructures. Herein, we developed an ultrasensitive top-down platform by incorporating a microfluidic sample preparation system, termed nanoPOTS (nanodroplet processing in one pot for trace samples), into a top-down proteomic workflow. A unique combination of a nonionic detergent dodecyl-ß-d-maltopyranoside (DDM) with urea as protein extraction buffer significantly improved both protein extraction efficiency and sample recovery. We hypothesize that the DDM detergent improves protein recovery by efficiently reducing nonspecific adsorption of intact proteins on container surfaces, while urea serves as a strong denaturant to disrupt noncovalent complexes and release intact proteins for downstream analysis. The nanoPOTS-based top-down platform reproducibly and quantitatively identified ∼170 to ∼620 proteoforms from ∼70 to ∼770 HeLa cells containing ∼10 to ∼115 ng of total protein. A variety of post-translational modifications including acetylation, myristoylation, and iron binding were identified using only less than 800 cells. We anticipate the nanoPOTS top-down proteomics platform will be broadly applicable in biomedical research, particularly where clinical specimens are not available in amounts amenable to standard workflows.


Subject(s)
Microfluidic Analytical Techniques , Nanoparticles/chemistry , Neoplasm Proteins/analysis , Proteomics , HeLa Cells , Humans , Maltose/analogs & derivatives , Maltose/chemistry , Particle Size , Surface Properties , Tumor Cells, Cultured , Urea/chemistry
19.
Mol Cell Proteomics ; 19(5): 828-838, 2020 05.
Article in English | MEDLINE | ID: mdl-32127492

ABSTRACT

Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100×) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ∼2500 proteins and precise quantification of ∼1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells.


Subject(s)
Isotope Labeling/methods , Proteomics/methods , Signal Processing, Computer-Assisted , Single-Cell Analysis , Automation , Cell Line , Humans
20.
Anal Chem ; 92(7): 4711-4715, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32208662

ABSTRACT

In many areas of application, key objectives of chemical separation and analysis are to minimize the sample quantity while maximizing the chemical information obtained. Increasing measurement sensitivity is especially critical for proteomics research, especially when processing trace samples and where multiple measurements are desired. A rich collection of technologies has been developed, but the resulting sensitivity remains insufficient for achieving in-depth coverage of proteomic samples as small as single cells. Here, we combine picoliter-scale liquid chromatography (picoLC) with mass spectrometry (MS) to address this issue. The picoLC employs a 2-µm-i.d. open tubular column to reduce the sample input needed to greatly increase the sensitivity achieved using electrospray ionization (ESI) with MS. With this picoLC-MS system, we show that we can identify ∼1000 proteins reliably using only 75 pg of tryptic peptides, representing a 10-100-fold sensitivity improvement compared with the state-of-the-art liquid chromatography (LC) or capillary electrophoresis (CE)-MS methods. PicoLC-MS extends the limit of separation science and is expected to be a powerful tool for single cell proteomics.


Subject(s)
Peptides/analysis , Proteomics , Chromatography, Liquid , Electrophoresis, Capillary , HeLa Cells , Humans , Mass Spectrometry , Particle Size , Single-Cell Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...