Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biologicals ; 85: 101738, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096736

ABSTRACT

This manuscript describes the use of an analytical assay that combines transfection of mammalian cells and isotope dilution mass spectrometry (IDMS) for accurate quantification of antigen expression. Expired mRNA COVID-19 vaccine material was stored at 4 °C, room temperature (∼25 °C), and 56 °C over a period of 5 weeks. The same vaccine was also exposed to 5 freeze-thaw cycles. Every week, the spike protein antigenic expression in mammalian (BHK-21) cells was evaluated. Housekeeping proteins, ß-actin and GAPDH, were simultaneously quantified to account for the variation in cell counts that occurs during maintenance and growth of cell cultures. Data show that vaccine stored at elevated temperatures results in reduced spike protein expression. Also, maintaining the vaccine in ultracold conditions or exposing the vaccine to freeze-thaw cycles had less effect on the vaccine's ability to produce the antigen in mammalian cells. We describe the use of IDMS as an antibody-free means to accurately quantify expressed protein from mammalian cells transfected with mRNA vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , Freezing , RNA, Messenger/genetics , Mammals
2.
Emerg Infect Dis ; 29(12): 2426-2432, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856204

ABSTRACT

During the 2022 multinational outbreak of monkeypox virus (MPXV) infection, the antiviral drug tecovirimat (TPOXX; SIGA Technologies, Inc., https://www.siga.com) was deployed in the United States on a large scale for the first time. The MPXV F13L gene homologue encodes the target of tecovirimat, and single amino acid changes in F13 are known to cause resistance to tecovirimat. Genomic sequencing identified 11 mutations previously reported to cause resistance, along with 13 novel mutations. Resistant phenotype was determined using a viral cytopathic effect assay. We tested 124 isolates from 68 patients; 96 isolates from 46 patients were found to have a resistant phenotype. Most resistant isolates were associated with severely immunocompromised mpox patients on multiple courses of tecovirimat treatment, whereas most isolates identified by routine surveillance of patients not treated with tecovirimat remained sensitive. The frequency of resistant viruses remains relatively low (<1%) compared with the total number of patients treated with tecovirimat.


Subject(s)
Mpox (monkeypox) , Humans , United States/epidemiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides/therapeutic use , Biological Assay , Monkeypox virus
3.
Vaccine ; 41(26): 3872-3884, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37202272

ABSTRACT

The advent of mRNA vaccine technology has been vital in rapidly creating and manufacturing COVID-19 vaccines at an industrial scale. To continue to accelerate this leading vaccine technology, an accurate method is needed to quantify antigens produced by the transfection of cells with a mRNA vaccine product. This will allow monitoring of protein expression during mRNA vaccine development and provide information on how changes to vaccine components affects the expression of the desired antigen. Developing novel approaches that allow for high-throughput screening of vaccines to detect changes in antigen production in cell culture prior to in vivo studies could aid vaccine development. We have developed and optimized an isotope dilution mass spectrometry method to detect and quantify the spike protein expressed after transfection of baby hamster kidney cells with expired COVID-19 mRNA vaccines. Five peptides of the spike protein are simultaneously quantified and provide assurance that protein digestion in the region of the target peptides is complete since results between the five peptides had a relative standard deviation of less than 15 %. In addition, two housekeeping proteins, actin and GAPDH, are quantified in the same analytical run to account for any variation in cell growth within the experiment. IDMS allows a precise and accurate means to quantify protein expression by mammalian cells transfected with an mRNA vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Isotopes , Antibodies, Viral , Mammals
4.
Vaccine ; 39(36): 5106-5115, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34344552

ABSTRACT

The emergence and subsequent global outbreak of the novel coronavirus SARS-CoV-2 prompted our laboratory to launch efforts to develop methods for SARS-CoV-2 antigen detection and quantification. We present an isotope dilution mass spectrometry method (IDMS) for rapid and accurate quantification of the primary antigens, spike and nucleocapsid proteins. This IDMS method utilizes liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze sample tryptic digests for detection and quantification of selected conserved peptides of SARS-CoV-2 spike and nucleocapsid proteins. The IDMS method has the necessary attributes to be successfully utilized for accurate quantification in SARS-CoV-2 protein-based vaccines and as targets of rapid diagnostic tests. Absolute quantification was achieved by quantifying and averaging 5 peptides for spike protein (3 peptides in the S1 subunit and 2 peptides in the S2 subunit) and 4 peptides for nucleocapsid protein. The overall relative standard deviation of the method was 3.67% for spike protein and 5.11% for nucleocapsid protein. IDMS offers speed (5 h total analysis time), sensitivity (LOQ; 10 fmol/µL) and precision for quantification of SARS-CoV-2 spike and nucleocapsid proteins.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Chromatography, Liquid , Coronavirus Nucleocapsid Proteins , Humans , Isotopes , Phosphoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tandem Mass Spectrometry
5.
Anal Chem ; 92(17): 11879-11887, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32867501

ABSTRACT

Avian influenza viruses, such as A(H5N1) and A(H7N9), are primary public health concerns due to their pandemic potential. Influenza vaccines represent the most effective response to this threat especially with timely provision. The current pandemic response timelines require a substantial period for strain-specific reference antigen and sera preparation for use with single-radial immunodiffusion (SRID), the accepted vaccine potency assay. To address this time lag, the isotope dilution mass spectrometry (IDMS) method was developed to quantify the absolute hemagglutinin (HA, the main influenza antigen) amount in the vaccine without the need for purified, inactivated, and calibrated virus reference antigens. However, an additional challenge in determining potency is to differentiate between vaccine antigens in their most potent form from other less potent, stressed antigen forms. The limited trypsin digestion (LTD) method has been developed and does not require strain-specific full-length reference antigens or antibodies; instead, stressed HA is selectively degraded, leaving the more potent form to be measured. LTD, followed by precipitation and IDMS, allows for efficient differentiation between potent and significantly less potent HA for vaccine release and potency testing across the vaccine's shelf life. In this study, we tested the LTD-IDMS assay on A(H5N1) vaccine material that had been stressed by low pH, heat, and multiple freeze-thaw cycles. The results showed that the LTD-IDMS method effectively quantified the potent HA in A(H5N1) vaccine material with results comparable to SRID. As such, it shows great promise to complement and potentially replace SRID in a pandemic when strain-specific reagents may not be readily available.


Subject(s)
Hemagglutinins/metabolism , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza Vaccines/immunology , Mass Spectrometry/methods , Humans
6.
Vaccine ; 36(41): 6144-6151, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30194004

ABSTRACT

Influenza vaccines are the most effective intervention to prevent the substantial public health burden of seasonal and pandemic influenza. Hemagglutinin (HA), as the main antigen in inactivated influenza vaccines (IIVs), elicits functional neutralizing antibodies and largely determines IIV effectiveness. HA potency has been evaluated by single-radial immunodiffusion (SRID), the standard in vitro potency assay for IIVs, to predict vaccine immunogenicity with a correlation to protective efficacy. We previously reported that limited trypsin digestion (LTD) selectively degraded stressed HA, so that an otherwise conformationally insensitive biophysical quantification technique could specifically quantify trypsin-resistant, immunologically active HA. Here, we demonstrate that isotope dilution mass spectrometry (IDMS), a method capable of quantifying the absolute HA concentration without reference antigen use, can be further expanded by adding LTD followed with precipitation to selectively quantify the active HA. We test the LTD-IDMS assay on H7N9 vaccines stressed by low pH, raised temperature, or freeze/thaw cycles. This method, unlike SRID, has no requirement for strain-specific reference antigens or antibodies and can generate potency values that correlate with SRID. Thus, LTD-IDMS is a promising alternative in vitro potency assay for influenza vaccines to complement and potentially replace SRID in a pandemic when strain specific reagents may not be readily available.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Influenza, Human/prevention & control , Hemagglutinins/metabolism , Humans , Isotope Labeling , Mass Spectrometry
7.
Vaccine ; 35(37): 5011-5018, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28774565

ABSTRACT

As a result of recent advances in mass spectrometry-based protein quantitation methods, these techniques are now poised to play a critical role in rapid formulation of pandemic influenza vaccines. Analytical techniques that have been developed and validated on seasonal influenza strains can be used to increase the quality and decrease the time required to deliver protective pandemic vaccines to the global population. The emergence of a potentially pandemic avian influenza A (H7N9) virus in March of 2013, prompted the US public health authorities and the vaccine industry to initiate production of a pre-pandemic vaccine for preparedness purposes. To this end, we evaluated the feasibility of using immunocapture isotope dilution mass spectrometry (IC-IDMS) to evaluate the suitability of the underlying monoclonal and polyclonal antibodies (mAbs and pAbs) for their capacity to isolate the H7 hemagglutinin (HA) in this new vaccine for quantification by IDMS. A broad range of H7 capture efficiencies was observed among mAbs tested by IC-IDMS with FR-545, 46/6, and G3 A533 exhibiting the highest cross-reactivity capabilities to H7 of A/Shanghai/2/2013. MAb FR-545 was selected for continued assessment, evaluated by IC-IDMS for mAb reactivity against H7 in the H7N9 candidate vaccine virus and compared with/to reactivity to the reference polyclonal antiserum in allantoic fluid, purified whole virus, lyophilized whole virus and final detergent-split monovalent vaccine preparations for vaccine development. IC-IDMS assessment of FR-545 alongside IC-IDMS using the reference polyclonal antiserum to A/Shanghai/2/2013 and with the regulatory SRID method showed strong correlation and mAb IC-IDMS could have played an important role in the event a potential surrogate potency test was required to be rapidly implemented.


Subject(s)
Influenza, Human/immunology , Influenza, Human/prevention & control , Mass Spectrometry/methods , Antibodies, Viral/immunology , Hemagglutinins/metabolism , Humans , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Pandemics/prevention & control , Vaccines, Inactivated/immunology , Vaccines, Inactivated/therapeutic use
8.
Anal Chem ; 89(5): 3130-3137, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28192976

ABSTRACT

Mounting evidence suggests that neuraminidase's functionality extends beyond its classical role in influenza virus infection and that antineuraminidase antibodies offer protective immunity. Therefore, a renewed interest in the development of neuraminidase (NA)-specific methods to characterize the glycoprotein and evaluate potential advantages for NA standardization in influenza vaccines has emerged. NA displays sialidase activity by cleaving off the terminal N-acetylneuraminic acid on α-2,3 or α-2,6 sialic acid containing receptors of host cells. The type and distribution of these sialic acid containing receptors is considered to be an important factor in transmission efficiency of influenza viruses between and among host species. Changes in hemagglutinin (HA) binding and NA specificity in reassortant viruses may be related to the emergence of new and potentially dangerous strains of influenza. Current methods to investigate neuraminidase activity use small derivatized sugars that are poor models for natural glycoprotein receptors and do not provide information on the linkage specificity. Here, a novel approach for rapid and accurate quantification of influenza neuraminidase activity is achieved utilizing ultra-high performance liquid chromatography (UPLC) and isotope dilution mass spectrometry (IDMS). Direct LC-MS/MS quantification of NA-released sialic acid provides precise measurement of influenza neuraminidase activity over a range of substrates. The method provides exceptional sensitivity and specificity with a limit of detection of 0.38 µM for sialic acid and the capacity to obtain accurate measurements of specific enzyme activity preference toward α-2,3-sialyllactose linkages, α-2,6-sialyllactose linkages, or whole glycosylated proteins such as fetuin.


Subject(s)
Chromatography, High Pressure Liquid , Influenza A Virus, H1N1 Subtype/enzymology , Neuraminidase/metabolism , Tandem Mass Spectrometry , Viral Proteins/metabolism , Carbon Isotopes/chemistry , Humans , Influenza Vaccines/analysis , Influenza Vaccines/metabolism , Kinetics , Lactose/analogs & derivatives , Lactose/analysis , Substrate Specificity
9.
PLoS One ; 10(6): e0128982, 2015.
Article in English | MEDLINE | ID: mdl-26068666

ABSTRACT

One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8), as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA) and neuraminidase (NA) genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses) was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.


Subject(s)
Hemagglutinins/metabolism , Influenza A virus/metabolism , Influenza Vaccines/immunology , Neuraminidase/metabolism , Viral Proteins/metabolism , Animals , Chickens , Hemagglutinins/genetics , Hemagglutinins/immunology , Influenza A virus/genetics , Neuraminidase/genetics , Neuraminidase/immunology , Ovum/virology , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Reassortant Viruses/metabolism , Viral Proteins/genetics , Viral Proteins/immunology
10.
Influenza Other Respir Viruses ; 9(5): 263-70, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25962412

ABSTRACT

BACKGROUND: The emergence of avian influenza A(H7N9) virus in poultry causing zoonotic human infections was reported on March 31, 2013. Development of A(H7N9) candidate vaccine viruses (CVV) for pandemic preparedness purposes was initiated without delay. Candidate vaccine viruses were derived by reverse genetics using the internal genes of A/Puerto/Rico/8/34 (PR8). The resulting A(H7N9) CVVs needed improvement because they had titers and antigen yields that were suboptimal for vaccine manufacturing in eggs, especially in a pandemic situation. METHODS: Two CVVs derived by reverse genetics were serially passaged in embryonated eggs to improve the hemagglutinin (HA) antigen yield. The total viral protein and HA antigen yields of six egg-passaged CVVs were determined by the BCA assay and isotope dilution mass spectrometry (IDMS) analysis, respectively. CVVs were antigenically characterized by hemagglutination inhibition (HI) assays with ferret antisera. RESULTS: Improvement of total viral protein yield was observed for the six egg-passaged CVVs; HA quantification by IDMS indicated approximately a twofold increase in yield of several egg-passaged viruses as compared to that of the parental CVV. Several different amino acid substitutions were identified in the HA of all viruses after serial passage. However, HI tests indicated that the antigenic properties of two CVVs remained unchanged. CONCLUSIONS: If influenza A(H7N9) viruses were to acquire sustained human-to-human transmissibility, the improved HA yield of the egg-passaged CVVs generated in this study could expedite vaccine manufacturing for pandemic mitigation.


Subject(s)
Eggs/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Animals , Chick Embryo , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza Vaccines/genetics , Influenza, Human/virology , Reverse Genetics , Serial Passage , Virus Cultivation
11.
Anal Chem ; 86(9): 4088-95, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24689548

ABSTRACT

Vaccination is the most effective means to prevent influenza and its serious complications. Influenza viral strains undergo rapid mutations of the surface proteins hemagglutinin (HA) and neuraminidase (NA) requiring vaccines to be frequently updated to include current circulating strains. It is nearly impossible to predict which strains will be circulating in the next influenza season. It is, therefore, imperative that the process of producing a vaccine be streamlined and as swift as possible. We have developed an isotope dilution mass spectrometry (IDMS) method to quantify HA and NA in H7N7, H7N2, and H7N9 influenza. The IDMS method involves enzymatic digestion of viral proteins and the specific detection of evolutionarily conserved target peptides. The four target peptides that were initially chosen for analysis of the HA protein of H7N2 and H7N7 subtypes were conserved and available for analysis of the H7N9 subtype that circulated in China in the spring of 2013. Thus, rapid response to the potential pandemic was realized. Quantification of a protein is performed by employing multiple peptides to ensure that the enzymatic digestion of the protein is efficient in the region of the target peptides, verify the accuracy of the measurement, and provide flexibility in the case of amino acid changes among newly emerging strains. The IDMS method is an accurate, sensitive, and selective method to quantify the amount of HA and NA antigens in primary liquid standards, crude allantoic fluid, purified virus samples, and final vaccine presentations.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza in Birds/metabolism , Tandem Mass Spectrometry/methods , Viral Proteins/analysis , Amino Acid Sequence , Animals , Birds , Chromatography, Liquid , Molecular Sequence Data , Sequence Homology, Amino Acid , Viral Proteins/chemistry , Viral Proteins/metabolism
12.
Influenza Other Respir Viruses ; 8(4): 474-81, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24698134

ABSTRACT

OBJECTIVES: Rapid influenza diagnostic tests (RIDTs) used widely in clinical practice are simple to use and provide results within 15 minutes; however, reported performance is variable, which causes concern when novel or variant viruses emerge. This study's goal was to assess the analytical reactivity of 13 RIDTs with recently circulating seasonal and H3N2v influenza viruses, using three different viral measures. DESIGN: Virus stocks were characterized by infectious dose (ID50 ) and nucleoprotein (NP) concentration, diluted at half-log dilutions, and tested with each RIDT and real-time RT-PCR. RESULTS: Strong correlation was observed between NP concentration and RIDT reactivity; however, only weak correlation was seen with ID50 or Ct values. Only four RIDTs detected viral NP at the lowest dilution for all influenza A viruses (IAV). Influenza A viruses not detected by more than one RIDT had lower NP levels. Of the 13 RIDTs, 9 had no significant differences in reactivity across IAV when compared to NP levels. CONCLUSIONS: Previous reports of RIDT performance typically compare reactivity based on ID50 titers, which in this study correlated only weakly with proportional amounts of viral NP in prepared virus samples. In the context of the strong correlation of RIDT reactivity with NP concentration, H3N2v was found to be as reactive as seasonal circulating IAV. While these findings may not reflect clinical performance of these RIDTs, measuring NP concentration can be useful in the future to assess comparable reactivity of available RIDTs, or to assess reactivity with newly evolving or emerging viruses.


Subject(s)
Diagnostic Tests, Routine/methods , Influenza A virus/isolation & purification , Influenza, Human/diagnosis , Point-of-Care Systems , Humans , Sensitivity and Specificity
13.
Vaccine ; 30(14): 2475-82, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22197963

ABSTRACT

Influenza vaccination is the primary method for preventing influenza and its severe complications. Licensed inactivated vaccines for seasonal or pandemic influenza are formulated to contain a preset amount of hemagglutinin (HA), the critical antigen to elicit protection. There is currently no regulatory method that quantifies neuraminidase (NA), the other major membrane-bound protein thought to have protective capability. This is primarily due to the limitations both in sensitivity and in selectivity of current means to quantify these antigens. Current methods to establish the HA concentration of vaccines rely on indirect measurements that are subject to considerable experimental variability. We present a liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for the absolute quantification of viral proteins in a complex mixture. Through use of an isotope dilution approach, HA and NA from viral subtypes H1N1, H3N2, and B were determined both directly and rapidly. Three peptides of each subtype were used in the analysis of HA to ensure complete digestion of the protein and accuracy of the measurement. This method has been applied to purified virus preparations, to monovalent bulk concentrates, to trivalent inactivated influenza vaccines, and even crude allantoic fluid with improved speed, sensitivity, precision, and accuracy. Detection of 1 µg/mL of protein is easily obtained using this method. The sensitivity of the method covers the range expected in vaccine preparations, including adjuvant-based vaccine. This LC/MS/MS approach substantially increases the selectivity, accuracy and precision used to quantify the amount of viral proteins in seasonal and pandemic influenza vaccines and reduce the time and effort to deliver influenza vaccines for public health use during the next influenza pandemic.


Subject(s)
Chromatography, Liquid , Hemagglutinin Glycoproteins, Influenza Virus/analysis , Influenza Vaccines/chemistry , Neuraminidase/analysis , Tandem Mass Spectrometry , Viral Proteins/analysis , Amino Acid Sequence , Animals , Cell Line , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza Vaccines/immunology , Isotopes , Molecular Sequence Data , Neuraminidase/chemistry , Peptides/analysis , Peptides/chemistry , Viral Proteins/chemistry
14.
Anal Chem ; 83(12): 4729-37, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21591780

ABSTRACT

An immunocapture isotope dilution mass spectrometry (IC-IDMS) method was developed to quantify antibody-bound influenza hemagglutinins (HA) in trivalent influenza vaccines (TIV). Currently, regulatory potency requirements for TIV require HA quantification based on the single radial immunodiffusion (SRID) assay, which is time-consuming, laborious, and requires production of large quantities of reagents globally. In IC-IDMS, antiserum to the HA of interest captured viral proteins that were in the correct conformation to be recognized by the antibodies. The captured proteins were digested, and evolutionarily conserved tryptic peptides were quantified using isotope-dilution liquid chromatography-tandem mass spectrometry. IC-IDMS relies on antibody-antigen binding similar to SRID but incorporates the accuracy and precision of IDMS. Polyclonal antibodies (pAb-H3) prepared by injection of sheep with purified H3 HA captured 82.9% (55.26 fmol/µL) of the total H3 HA (66.69 fmol/µL) from the commercial TIV and 93.6% (57.23 fmol/µL) of the total H3 HA (61.14 fmol/µL) in purified virus. While other HA (H1, B), neuraminidase (N1, N2, NB), viral matrix proteins, and nucleoproteins were also captured by this antiserum, our results were not affected due to the specificity of the mass spectrometer. IC-IDMS is an accurate, precise, sensitive, and selective method to measure antibody-bound HA in purified virus and commercial vaccines.


Subject(s)
Chromatography, High Pressure Liquid/methods , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Tandem Mass Spectrometry/methods , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/virology , Isotope Labeling , Neuraminidase/immunology , Neuraminidase/metabolism , Nucleoproteins/immunology , Nucleoproteins/metabolism , Peptides/analysis , Viral Matrix Proteins/immunology , Viral Matrix Proteins/metabolism
15.
Anal Biochem ; 393(1): 48-55, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19501563

ABSTRACT

We present a rapid and efficient in-solution enzymatic digestion protocol suitable for mass spectrometry-based absolute protein quantification techniques. The digestion method employs RapiGest SF (an acid-labile surfactant), an excess amount of modified trypsin (enzyme-to-substrate ratio of 2.5:1), and an incubation time of 2 h. No reduction/alkylation reagents are used. Digestion parameters were varied systematically to monitor their effect on rate and completeness of digestion. To demonstrate the general applicability of the method, the optimization was done using a viral hemagglutinin (HA) as a model protein and then applied to ricin, a potent protein toxin extracted from the castor bean (Ricinus communis). The parameters that were optimized included incubation time, concentration of RapiGest SF, enzyme-to-substrate ratio, and incubation temperature. The optimization was done by comparing the yields from two protein-specific peptides originating from two different sites of the HA protein. The analysis was performed by liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode using isotopically labeled peptide standards for quantification.


Subject(s)
Biochemistry/methods , Hemagglutinin Glycoproteins, Influenza Virus/analysis , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H5N1 Subtype/metabolism , Ricin/metabolism , Amino Acid Sequence , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Molecular Sequence Data , Ricin/analysis , Ricinus/chemistry
16.
Anal Chem ; 81(10): 3979-85, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19364092

ABSTRACT

Protein quantification using stable isotope dilution mass spectrometry requires the quantification of specific peptides unique to the protein of interest. Since these peptides are used as calibration standards, accurate and precise measurement of these target peptides is critical. This peptide measurement has typically been made by amino acid analysis (AAA) using absorbance or fluorescence detection methods. This approach can be limited to only a few amino acids, is often not traceable to high-quality reference standards, and not uncommonly has coefficients of variation (CVs) that exceed 10%. We report here an isobaric-tagged isotope dilution mass spectrometry method for AAA that provides excellent sensitivity, specificity, and precision; utilizes a broad range of amino acids; and uses U.S. National Institute of Standards and Technology (NIST) amino acid standards for an accuracy base. The average CV for the method applied to three different peptides with measurements on 7 different days was 3.57% (range 2.72-4.20%). We applied this method to the quantification of three NIST standard peptides and hemagglutinin, an influenza virus surface protein.


Subject(s)
Chromatography, High Pressure Liquid/methods , Peptides/analysis , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Hemagglutinins/analysis , Indicator Dilution Techniques , Influenza A virus/chemistry , Isotope Labeling , Peptides/chemistry , Reference Standards
17.
Anal Chem ; 81(8): 3109-18, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19290601

ABSTRACT

Using liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of deglycosylated and intact glycopeptides from tryptic digests of whole influenza virus, we determined that the six predicted N-linked glycosylation sites within the N-terminal ectodomain of hemagglutinin (HA) from three selected H5N1 strains are occupied. The use of selective sample preparation strategies, including solid-phase extraction (SPE) of glycopeptides via hydrazide capture chemistry as well as hydrophilic interaction liquid chromatography (HILIC), sufficiently reduced sample complexity to allow determination of occupied glycosylation sites. The specific amino acid sequence of the tryptic glycopeptides for the identified sites varied slightly among strains, but the overall locations of the occupied glycosylation sites were conserved in the protein sequence. We used this knowledge of glycosylation site occupation to examine the glycans attached to these occupied sites on HA for a reassortant H5N1 strain grown in embryonated chicken eggs. By applying mass spectrometry-based methodologies for examining glycosylation to the study of influenza virus proteins, we can better understand the effect that this post-translational modification has upon the virulence and antigenicity of emerging strains.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H5N1 Subtype/chemistry , Amino Acid Sequence , Analytic Sample Preparation Methods , Binding Sites , Chromatography, Liquid , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/analysis , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza Vaccines , Molecular Sequence Data , Protein Structure, Tertiary , Reassortant Viruses/immunology , Reassortant Viruses/pathogenicity , Solid Phase Extraction , Tandem Mass Spectrometry , Trypsin/metabolism , Virulence
18.
Vaccine ; 26(20): 2510-20, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18440105

ABSTRACT

Influenza vaccination is the primary method for preventing influenza and its severe complications. Licensed inactivated vaccines for seasonal or pandemic influenza are formulated to contain a preset amount of hemagglutinin (HA), the critical antigen to elicit protection. Current methods to establish the HA concentration of vaccines rely on indirect measurements that are subject to considerable experimental variability. We present a liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for the absolute quantification of viral proteins in a complex mixture. Through use of an isotope dilution approach, HA from viral subtypes H1, H3, H5, and B was determined both directly and rapidly. This method can be applied to purified virus preparations, to monovalent bulk concentrates, or to trivalent inactivated influenza vaccines with improved speed, sensitivity, precision, and accuracy. This LC/MS/MS approach may substantially increase the reliability of methods used to quantitate the amount of antigen in seasonal and pandemic influenza vaccines and reduce the time and effort to deliver influenza vaccines for public health use during the next influenza pandemic.


Subject(s)
Antigens, Viral/analysis , Chromatography, Liquid/methods , Complex Mixtures/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/analysis , Orthomyxoviridae/chemistry , Tandem Mass Spectrometry/methods , Humans , Isotopes
19.
Anal Chem ; 80(8): 2688-93, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18348541

ABSTRACT

A selective, rapid, and sensitive 12.7-min ultra performance liquid chromatography-isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) method was developed and compared to conventional high-performance liquid chromatography-isotope dilution tandem mass spectrometry (HPLC-ID/MS/MS) for the absolute quantitative determination of multiple proteins from complex matrixes. The UPLC analysis was carried out on an Acquity UPLC ethylene-bridged hybrid (BEH) C18 reversed-phase column (50 x 2.1 mm i.d., 1.7-microm particle size) with gradient elution at a flow rate of 300 microL/min. For the HPLC separation, a similar gradient profile on a reversed-phase C18 column with dimensions of 150 x 1.0 mm at a flow rate of 30 microL/min was utilized. The aqueous and organic mobile phases were 0.1% formic acid in water and acetonitrile, respectively. Detection was performed on a triple-quadrupole mass spectrometer operated in the multiple reaction monitoring mode. Linear calibration curves were obtained in the concentration range of 10-90 fmol/microL. Relative standard deviation values equal to or less than 6.5% were obtained by the UPLC-ID/MS/MS method, thus demonstrating performance equivalent to conventional HPLC-ID/MS/MS for isotope dilution quantification of peptides and proteins. UPLC provides additional dimensions of rapid analysis time and high-sample throughput, which expands laboratory emergency response capabilities over conventional HPLC.


Subject(s)
Chromatography, Liquid/methods , Influenza Vaccines/analysis , Peptides/analysis , Proteins/analysis , Tandem Mass Spectrometry/methods , Viral Proteins/analysis , Chromatography, High Pressure Liquid/methods , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/chemistry , Radioisotope Dilution Technique , Viral Proteins/immunology
20.
Anal Chem ; 78(6): 1789-800, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16536413

ABSTRACT

Although immunoassay-based methods are sensitive and widely used for measuring protein toxins in food matrixes, there is a need for methods that can directly confirm the molecular identity of the toxin in situations where immunoassay tests yield a positive result. A method has been developed that uses mass spectrometry to identify a protein toxin, staphylococcal enterotoxin B (SEB), in a model food matrix, apple juice. The approach employs ultrafiltration to remove low molecular weight components from the sample, after which the remaining high molecular weight fraction, containing the protein, is digested with trypsin. The tryptic fragments are separated from residual biopolymers and analyzed by liquid chromatography-electrospray mass spectrometry. The background is still sufficiently complex that tandem mass spectrometry (MS/MS) is used to confirm the identity of target peptides. Limits of detection are 80 ng of SEB for MS and 100 ng for full scan MS/MS, using a tryptic fragment as the analytical target. Lower detection limits can be obtained using selected ion monitoring and multiple reaction monitoring. The presence of SEB can be confirmed at concentrations as low as 5 parts-per-billion by increasing the size of the sample to 10 mL. The method is applicable to the detection of SEB in other water-soluble food matrixes.


Subject(s)
Enterotoxins/analysis , Fruit/chemistry , Vegetables/chemistry , Chromatography, Liquid , Food Analysis , Mass Spectrometry , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...